Cargando…
Micron-Sized Monodisperse Particle LiNi(0.6)Co(0.2)Mn(0.2)O(2) Derived by Oxalate Solvothermal Process Combined with Calcination as Cathode Material for Lithium-Ion Batteries
Ni-rich cathode LiNi(x)Co(y)Mn(1-x-y)O(2) (NCM, x ≥ 0.5) materials are promising cathodes for lithium-ion batteries due to their high energy density and low cost. However, several issues, such as their complex preparation and electrochemical instability have hindered their commercial application. He...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155954/ https://www.ncbi.nlm.nih.gov/pubmed/34063493 http://dx.doi.org/10.3390/ma14102576 |
Sumario: | Ni-rich cathode LiNi(x)Co(y)Mn(1-x-y)O(2) (NCM, x ≥ 0.5) materials are promising cathodes for lithium-ion batteries due to their high energy density and low cost. However, several issues, such as their complex preparation and electrochemical instability have hindered their commercial application. Herein, a simple solvothermal method combined with calcination was employed to synthesize LiNi(0.6)Co(0.2)Mn(0.2)O(2) with micron-sized monodisperse particles, and the influence of the sintering temperature on the structures, morphologies, and electrochemical properties was investigated. The material sintered at 800 °C formed micron-sized particles with monodisperse characteristics, and a well-order layered structure. When charged–discharged in the voltage range of 2.8–4.3 V, it delivered an initial discharge capacity of 175.5 mAh g(−1) with a Coulombic efficiency of 80.3% at 0.1 C, and a superior discharge capacity of 135.4 mAh g(−1) with a capacity retention of 84.4% after 100 cycles at 1 C. The reliable electrochemical performance is probably attributable to the micron-sized monodisperse particles, which ensured stable crystal structure and fewer side reactions. This work is expected to provide a facile approach to preparing monodisperse particles of different scales, and improve the performance of Ni-rich NCM or other cathode materials for lithium-ion batteries. |
---|