Cargando…
Seismic Protection of RC Buildings by Polymeric Infill Wall-Frame Interface
This paper is aimed at investigating the usage of flexible joints in masonry infilled walls surrounded by reinforced concrete (RC) frames. For this purpose, a real-size specimen was numerically created and exposed to the seismic loads. In order to evaluate both in-plane and out-of-plane performances...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155977/ https://www.ncbi.nlm.nih.gov/pubmed/34069131 http://dx.doi.org/10.3390/polym13101577 |
_version_ | 1783699329903493120 |
---|---|
author | Akyildiz, Ahmet Tugrul Kowalska-Koczwara, Alicja Hojdys, Łukasz |
author_facet | Akyildiz, Ahmet Tugrul Kowalska-Koczwara, Alicja Hojdys, Łukasz |
author_sort | Akyildiz, Ahmet Tugrul |
collection | PubMed |
description | This paper is aimed at investigating the usage of flexible joints in masonry infilled walls surrounded by reinforced concrete (RC) frames. For this purpose, a real-size specimen was numerically created and exposed to the seismic loads. In order to evaluate both in-plane and out-of-plane performances of the infill walls, the system was chosen as a box shaped three-dimensional structure. In total, three different one-story constructions, which have single bays in two perpendicular directions, were modeled. The first type is the bare-frame without the infill walls, which was determined as a reference system. The second and third types of buildings are conventional mortar joint and PolyUrethane Flexible Joint (PUFJ) implemented ones, respectively. The influence of these joints on the material level are investigated in detail. Furthermore, general building dynamic characteristics were extracted by means of acceleration and displacement results as well as frequency domain mode shapes. Analyses revealed that PUFJ implementation on such buildings has promising outcomes and helps to sustain structural stability against the detrimental effects of earthquakes. |
format | Online Article Text |
id | pubmed-8155977 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81559772021-05-28 Seismic Protection of RC Buildings by Polymeric Infill Wall-Frame Interface Akyildiz, Ahmet Tugrul Kowalska-Koczwara, Alicja Hojdys, Łukasz Polymers (Basel) Article This paper is aimed at investigating the usage of flexible joints in masonry infilled walls surrounded by reinforced concrete (RC) frames. For this purpose, a real-size specimen was numerically created and exposed to the seismic loads. In order to evaluate both in-plane and out-of-plane performances of the infill walls, the system was chosen as a box shaped three-dimensional structure. In total, three different one-story constructions, which have single bays in two perpendicular directions, were modeled. The first type is the bare-frame without the infill walls, which was determined as a reference system. The second and third types of buildings are conventional mortar joint and PolyUrethane Flexible Joint (PUFJ) implemented ones, respectively. The influence of these joints on the material level are investigated in detail. Furthermore, general building dynamic characteristics were extracted by means of acceleration and displacement results as well as frequency domain mode shapes. Analyses revealed that PUFJ implementation on such buildings has promising outcomes and helps to sustain structural stability against the detrimental effects of earthquakes. MDPI 2021-05-14 /pmc/articles/PMC8155977/ /pubmed/34069131 http://dx.doi.org/10.3390/polym13101577 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Akyildiz, Ahmet Tugrul Kowalska-Koczwara, Alicja Hojdys, Łukasz Seismic Protection of RC Buildings by Polymeric Infill Wall-Frame Interface |
title | Seismic Protection of RC Buildings by Polymeric Infill Wall-Frame Interface |
title_full | Seismic Protection of RC Buildings by Polymeric Infill Wall-Frame Interface |
title_fullStr | Seismic Protection of RC Buildings by Polymeric Infill Wall-Frame Interface |
title_full_unstemmed | Seismic Protection of RC Buildings by Polymeric Infill Wall-Frame Interface |
title_short | Seismic Protection of RC Buildings by Polymeric Infill Wall-Frame Interface |
title_sort | seismic protection of rc buildings by polymeric infill wall-frame interface |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155977/ https://www.ncbi.nlm.nih.gov/pubmed/34069131 http://dx.doi.org/10.3390/polym13101577 |
work_keys_str_mv | AT akyildizahmettugrul seismicprotectionofrcbuildingsbypolymericinfillwallframeinterface AT kowalskakoczwaraalicja seismicprotectionofrcbuildingsbypolymericinfillwallframeinterface AT hojdysłukasz seismicprotectionofrcbuildingsbypolymericinfillwallframeinterface |