Cargando…
Construction of Stretching-Bending Sequential Pattern to Recognize Work Cycles for Earthmoving Excavator from Long Video Sequences
Counting the number of work cycles per unit of time of earthmoving excavators is essential in order to calculate their productivity in earthmoving projects. The existing methods based on computer vision (CV) find it difficult to recognize the work cycles of earthmoving excavators effectively in long...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155994/ https://www.ncbi.nlm.nih.gov/pubmed/34069105 http://dx.doi.org/10.3390/s21103427 |
_version_ | 1783699333905907712 |
---|---|
author | Wu, Yiguang Wang, Meizhen Liu, Xuejun Wang, Ziran Ma, Tianwu Xie, Yujia Li, Xiuquan Wang, Xing |
author_facet | Wu, Yiguang Wang, Meizhen Liu, Xuejun Wang, Ziran Ma, Tianwu Xie, Yujia Li, Xiuquan Wang, Xing |
author_sort | Wu, Yiguang |
collection | PubMed |
description | Counting the number of work cycles per unit of time of earthmoving excavators is essential in order to calculate their productivity in earthmoving projects. The existing methods based on computer vision (CV) find it difficult to recognize the work cycles of earthmoving excavators effectively in long video sequences. Even the most advanced sequential pattern-based approach finds recognition difficult because it has to discern many atomic actions with a similar visual appearance. In this paper, we combine atomic actions with a similar visual appearance to build a stretching–bending sequential pattern (SBSP) containing only “Stretching” and “Bending” atomic actions. These two atomic actions are recognized using a deep learning-based single-shot detector (SSD). The intersection over union (IOU) is used to associate atomic actions to recognize the work cycle. In addition, we consider the impact of reality factors (such as driver misoperation) on work cycle recognition, which has been neglected in existing studies. We propose to use the time required to transform “Stretching” to “Bending” in the work cycle to filter out abnormal work cycles caused by driver misoperation. A case study is used to evaluate the proposed method. The results show that SBSP can effectively recognize the work cycles of earthmoving excavators in real time in long video sequences and has the ability to calculate the productivity of earthmoving excavators accurately. |
format | Online Article Text |
id | pubmed-8155994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81559942021-05-28 Construction of Stretching-Bending Sequential Pattern to Recognize Work Cycles for Earthmoving Excavator from Long Video Sequences Wu, Yiguang Wang, Meizhen Liu, Xuejun Wang, Ziran Ma, Tianwu Xie, Yujia Li, Xiuquan Wang, Xing Sensors (Basel) Article Counting the number of work cycles per unit of time of earthmoving excavators is essential in order to calculate their productivity in earthmoving projects. The existing methods based on computer vision (CV) find it difficult to recognize the work cycles of earthmoving excavators effectively in long video sequences. Even the most advanced sequential pattern-based approach finds recognition difficult because it has to discern many atomic actions with a similar visual appearance. In this paper, we combine atomic actions with a similar visual appearance to build a stretching–bending sequential pattern (SBSP) containing only “Stretching” and “Bending” atomic actions. These two atomic actions are recognized using a deep learning-based single-shot detector (SSD). The intersection over union (IOU) is used to associate atomic actions to recognize the work cycle. In addition, we consider the impact of reality factors (such as driver misoperation) on work cycle recognition, which has been neglected in existing studies. We propose to use the time required to transform “Stretching” to “Bending” in the work cycle to filter out abnormal work cycles caused by driver misoperation. A case study is used to evaluate the proposed method. The results show that SBSP can effectively recognize the work cycles of earthmoving excavators in real time in long video sequences and has the ability to calculate the productivity of earthmoving excavators accurately. MDPI 2021-05-14 /pmc/articles/PMC8155994/ /pubmed/34069105 http://dx.doi.org/10.3390/s21103427 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Yiguang Wang, Meizhen Liu, Xuejun Wang, Ziran Ma, Tianwu Xie, Yujia Li, Xiuquan Wang, Xing Construction of Stretching-Bending Sequential Pattern to Recognize Work Cycles for Earthmoving Excavator from Long Video Sequences |
title | Construction of Stretching-Bending Sequential Pattern to Recognize Work Cycles for Earthmoving Excavator from Long Video Sequences |
title_full | Construction of Stretching-Bending Sequential Pattern to Recognize Work Cycles for Earthmoving Excavator from Long Video Sequences |
title_fullStr | Construction of Stretching-Bending Sequential Pattern to Recognize Work Cycles for Earthmoving Excavator from Long Video Sequences |
title_full_unstemmed | Construction of Stretching-Bending Sequential Pattern to Recognize Work Cycles for Earthmoving Excavator from Long Video Sequences |
title_short | Construction of Stretching-Bending Sequential Pattern to Recognize Work Cycles for Earthmoving Excavator from Long Video Sequences |
title_sort | construction of stretching-bending sequential pattern to recognize work cycles for earthmoving excavator from long video sequences |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155994/ https://www.ncbi.nlm.nih.gov/pubmed/34069105 http://dx.doi.org/10.3390/s21103427 |
work_keys_str_mv | AT wuyiguang constructionofstretchingbendingsequentialpatterntorecognizeworkcyclesforearthmovingexcavatorfromlongvideosequences AT wangmeizhen constructionofstretchingbendingsequentialpatterntorecognizeworkcyclesforearthmovingexcavatorfromlongvideosequences AT liuxuejun constructionofstretchingbendingsequentialpatterntorecognizeworkcyclesforearthmovingexcavatorfromlongvideosequences AT wangziran constructionofstretchingbendingsequentialpatterntorecognizeworkcyclesforearthmovingexcavatorfromlongvideosequences AT matianwu constructionofstretchingbendingsequentialpatterntorecognizeworkcyclesforearthmovingexcavatorfromlongvideosequences AT xieyujia constructionofstretchingbendingsequentialpatterntorecognizeworkcyclesforearthmovingexcavatorfromlongvideosequences AT lixiuquan constructionofstretchingbendingsequentialpatterntorecognizeworkcyclesforearthmovingexcavatorfromlongvideosequences AT wangxing constructionofstretchingbendingsequentialpatterntorecognizeworkcyclesforearthmovingexcavatorfromlongvideosequences |