Cargando…
Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols
Epidemiological studies have demonstrated an association between ambient particulate matter (PM) exposure and vascular diseases. Here, we observed that treatment with ambient PM increased cell migration ability in vascular smooth muscle cells (VSMCs) and pulmonary arterial SMCs (PASMCs). These resul...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156007/ https://www.ncbi.nlm.nih.gov/pubmed/34069133 http://dx.doi.org/10.3390/antiox10050782 |
_version_ | 1783699337041149952 |
---|---|
author | Ho, Chia-Chi Chen, Yu-Cheng Tsai, Ming-Hsien Tsai, Hui-Ti Weng, Chen-Yi Yet, Shaw-Fang Lin, Pinpin |
author_facet | Ho, Chia-Chi Chen, Yu-Cheng Tsai, Ming-Hsien Tsai, Hui-Ti Weng, Chen-Yi Yet, Shaw-Fang Lin, Pinpin |
author_sort | Ho, Chia-Chi |
collection | PubMed |
description | Epidemiological studies have demonstrated an association between ambient particulate matter (PM) exposure and vascular diseases. Here, we observed that treatment with ambient PM increased cell migration ability in vascular smooth muscle cells (VSMCs) and pulmonary arterial SMCs (PASMCs). These results suggest that VSMCs and PASMCs transitioned from a differentiated to a synthetic phenotype after PM exposure. Furthermore, treatment with PM increased intracellular reactive oxygen species (ROS), activated the NF-κB signaling pathway, and increased the expression of proinflammatory cytokines in VSMCs. Using specific inhibitors, we demonstrated that PM increased the migration ability of VSMCs via the nicotinamide–adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1)/ROS-dependent NF-κB signaling pathway, which also partially involved in the induction of proinflammatory cytokines. Finally, we investigated whether nature polyphenolic compounds prevent PM-induced migration and proinflammatory cytokines secretion in VSMCs. Curcumin, resveratrol, and gallic acid prevented PM(2.5)-induced migration via the ROS-dependent NF-κB signaling pathway. However, honokiol did not prevent PM(2.5)-induced migration or activation of the ROS-dependent NF-κB signaling pathway. On the other hand, all polyphenols prevented PM(2.5)-induced cytokines secretion. These data indicated that polyphenols prevented PM-induced migration and cytokine secretion via blocking the ROS-dependent NF-κB signaling pathway in VSMCs. However, other mechanisms may also contribute to PM-induced cytokine secretion. |
format | Online Article Text |
id | pubmed-8156007 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81560072021-05-28 Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols Ho, Chia-Chi Chen, Yu-Cheng Tsai, Ming-Hsien Tsai, Hui-Ti Weng, Chen-Yi Yet, Shaw-Fang Lin, Pinpin Antioxidants (Basel) Article Epidemiological studies have demonstrated an association between ambient particulate matter (PM) exposure and vascular diseases. Here, we observed that treatment with ambient PM increased cell migration ability in vascular smooth muscle cells (VSMCs) and pulmonary arterial SMCs (PASMCs). These results suggest that VSMCs and PASMCs transitioned from a differentiated to a synthetic phenotype after PM exposure. Furthermore, treatment with PM increased intracellular reactive oxygen species (ROS), activated the NF-κB signaling pathway, and increased the expression of proinflammatory cytokines in VSMCs. Using specific inhibitors, we demonstrated that PM increased the migration ability of VSMCs via the nicotinamide–adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1)/ROS-dependent NF-κB signaling pathway, which also partially involved in the induction of proinflammatory cytokines. Finally, we investigated whether nature polyphenolic compounds prevent PM-induced migration and proinflammatory cytokines secretion in VSMCs. Curcumin, resveratrol, and gallic acid prevented PM(2.5)-induced migration via the ROS-dependent NF-κB signaling pathway. However, honokiol did not prevent PM(2.5)-induced migration or activation of the ROS-dependent NF-κB signaling pathway. On the other hand, all polyphenols prevented PM(2.5)-induced cytokines secretion. These data indicated that polyphenols prevented PM-induced migration and cytokine secretion via blocking the ROS-dependent NF-κB signaling pathway in VSMCs. However, other mechanisms may also contribute to PM-induced cytokine secretion. MDPI 2021-05-14 /pmc/articles/PMC8156007/ /pubmed/34069133 http://dx.doi.org/10.3390/antiox10050782 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ho, Chia-Chi Chen, Yu-Cheng Tsai, Ming-Hsien Tsai, Hui-Ti Weng, Chen-Yi Yet, Shaw-Fang Lin, Pinpin Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols |
title | Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols |
title_full | Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols |
title_fullStr | Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols |
title_full_unstemmed | Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols |
title_short | Ambient Particulate Matter Induces Vascular Smooth Muscle Cell Phenotypic Changes via NOX1/ROS/NF-κB Dependent and Independent Pathways: Protective Effects of Polyphenols |
title_sort | ambient particulate matter induces vascular smooth muscle cell phenotypic changes via nox1/ros/nf-κb dependent and independent pathways: protective effects of polyphenols |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156007/ https://www.ncbi.nlm.nih.gov/pubmed/34069133 http://dx.doi.org/10.3390/antiox10050782 |
work_keys_str_mv | AT hochiachi ambientparticulatematterinducesvascularsmoothmusclecellphenotypicchangesvianox1rosnfkbdependentandindependentpathwaysprotectiveeffectsofpolyphenols AT chenyucheng ambientparticulatematterinducesvascularsmoothmusclecellphenotypicchangesvianox1rosnfkbdependentandindependentpathwaysprotectiveeffectsofpolyphenols AT tsaiminghsien ambientparticulatematterinducesvascularsmoothmusclecellphenotypicchangesvianox1rosnfkbdependentandindependentpathwaysprotectiveeffectsofpolyphenols AT tsaihuiti ambientparticulatematterinducesvascularsmoothmusclecellphenotypicchangesvianox1rosnfkbdependentandindependentpathwaysprotectiveeffectsofpolyphenols AT wengchenyi ambientparticulatematterinducesvascularsmoothmusclecellphenotypicchangesvianox1rosnfkbdependentandindependentpathwaysprotectiveeffectsofpolyphenols AT yetshawfang ambientparticulatematterinducesvascularsmoothmusclecellphenotypicchangesvianox1rosnfkbdependentandindependentpathwaysprotectiveeffectsofpolyphenols AT linpinpin ambientparticulatematterinducesvascularsmoothmusclecellphenotypicchangesvianox1rosnfkbdependentandindependentpathwaysprotectiveeffectsofpolyphenols |