Cargando…

Benchmarking Audio Signal Representation Techniques for Classification with Convolutional Neural Networks

Audio signal classification finds various applications in detecting and monitoring health conditions in healthcare. Convolutional neural networks (CNN) have produced state-of-the-art results in image classification and are being increasingly used in other tasks, including signal classification. Howe...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharan, Roneel V., Xiong, Hao, Berkovsky, Shlomo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156023/
https://www.ncbi.nlm.nih.gov/pubmed/34069189
http://dx.doi.org/10.3390/s21103434
Descripción
Sumario:Audio signal classification finds various applications in detecting and monitoring health conditions in healthcare. Convolutional neural networks (CNN) have produced state-of-the-art results in image classification and are being increasingly used in other tasks, including signal classification. However, audio signal classification using CNN presents various challenges. In image classification tasks, raw images of equal dimensions can be used as a direct input to CNN. Raw time-domain signals, on the other hand, can be of varying dimensions. In addition, the temporal signal often has to be transformed to frequency-domain to reveal unique spectral characteristics, therefore requiring signal transformation. In this work, we overview and benchmark various audio signal representation techniques for classification using CNN, including approaches that deal with signals of different lengths and combine multiple representations to improve the classification accuracy. Hence, this work surfaces important empirical evidence that may guide future works deploying CNN for audio signal classification purposes.