Cargando…

Microscopic Characterization of Bioactivate Implant Surfaces: Increasing Wettability Using Salts and Dry Technology

The surface topography of dental implants plays an important role in cell-surface interaction promoting cell adhesion, proliferation and differentiation influencing osseointegration. A hydrophilic implant leads to the absorption of water molecules and subsequently promotes the adhesion of cells to t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gianfreda, Francesco, Antonacci, Donato, Raffone, Carlo, Muzzi, Maurizio, Pistilli, Valeria, Bollero, Patrizio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156028/
https://www.ncbi.nlm.nih.gov/pubmed/34067747
http://dx.doi.org/10.3390/ma14102608
Descripción
Sumario:The surface topography of dental implants plays an important role in cell-surface interaction promoting cell adhesion, proliferation and differentiation influencing osseointegration. A hydrophilic implant leads to the absorption of water molecules and subsequently promotes the adhesion of cells to the implant binding protein. Dried salts on the implant surfaces allow one to store the implant surfaces in a dry environment while preserving their hydrophilic characteristics. This process has been identified as “dry technology”. The aim of the present study is to describe from a micrometric and nanometric point of view the characteristics of this new bioactivated surface obtained using salts dried on the surface. Topographic analysis, energy-dispersive X-ray spectroscopy, and contact angle characterization were performed on the samples of a sandblasted and dual acid-etched surface (ABT), a nanosurface (Nano) deriving from the former but with the adding of salts air dried and a nanosurface with salts dissolved with distilled water (Nano H(2)O). The analysis revealed promising results for nanostructured surfaces with increased wettability and a more articulated surface nanotopography than the traditional ABT surface. In conclusion, this study validates a new promising ultra-hydrophilic nano surface obtained by sandblasting, double acid etching and surface salt deposition using dry technology.