Cargando…
Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images
SIMPLE SUMMARY: Histopathological examination of lymph node (LN) specimens allows the detection of hematological diseases. The identification and the classification of lymphoma, a blood cancer with a manifestation in LNs, are difficult and require many years of training, as well as additional expens...
Autores principales: | Steinbuss, Georg, Kriegsmann, Mark, Zgorzelski, Christiane, Brobeil, Alexander, Goeppert, Benjamin, Dietrich, Sascha, Mechtersheimer, Gunhild, Kriegsmann, Katharina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156071/ https://www.ncbi.nlm.nih.gov/pubmed/34067726 http://dx.doi.org/10.3390/cancers13102419 |
Ejemplares similares
-
Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections
por: Kriegsmann, Katharina, et al.
Publicado: (2022) -
Corrigendum: Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections
por: Kriegsmann, Katharina, et al.
Publicado: (2023) -
Deep Learning in Pancreatic Tissue: Identification of Anatomical Structures, Pancreatic Intraepithelial Neoplasia, and Ductal Adenocarcinoma
por: Kriegsmann, Mark, et al.
Publicado: (2021) -
Implementation of deep learning in liver pathology optimizes diagnosis of benign lesions and adenocarcinoma metastasis
por: Kriegsmann, Mark, et al.
Publicado: (2023) -
Deep Learning for the Classification of Small-Cell and Non-Small-Cell Lung Cancer
por: Kriegsmann, Mark, et al.
Publicado: (2020)