Cargando…
WS-RCNN: Learning to Score Proposals for Weakly Supervised Instance Segmentation
Weakly supervised instance segmentation (WSIS) provides a promising way to address instance segmentation in the absence of sufficient labeled data for training. Previous attempts on WSIS usually follow a proposal-based paradigm, critical to which is the proposal scoring strategy. These works mostly...
Autores principales: | Ou, Jia-Rong, Deng, Shu-Le, Yu, Jin-Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156195/ https://www.ncbi.nlm.nih.gov/pubmed/34067559 http://dx.doi.org/10.3390/s21103475 |
Ejemplares similares
-
Instance-Level Contrastive Learning for Weakly Supervised Object Detection
por: Zhang, Ming, et al.
Publicado: (2022) -
Instance segmentation using semi-supervised learning for fire recognition
por: Sun, Guangmin, et al.
Publicado: (2022) -
Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning
por: Teramoto, Atsushi, et al.
Publicado: (2021) -
Colorectal cancer lymph node metastasis prediction with weakly supervised transformer-based multi-instance learning
por: Tan, Luxin, et al.
Publicado: (2023) -
Segmentation of Unsound Wheat Kernels Based on Improved Mask RCNN
por: Shen, Ran, et al.
Publicado: (2023)