Cargando…
Automated AI-Driven CT Quantification of Lung Disease Predicts Adverse Outcomes in Patients Hospitalized for COVID-19 Pneumonia
The purpose of our work was to assess the independent and incremental value of AI-derived quantitative determination of lung lesions extent on initial CT scan for the prediction of clinical deterioration or death in patients hospitalized with COVID-19 pneumonia. 323 consecutive patients (mean age 65...
Autores principales: | Chabi, Marie Laure, Dana, Ophélie, Kennel, Titouan, Gence-Breney, Alexia, Salvator, Hélène, Ballester, Marie Christine, Vasse, Marc, Brun, Anne Laure, Mellot, François, Grenier, Philippe A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156322/ https://www.ncbi.nlm.nih.gov/pubmed/34069115 http://dx.doi.org/10.3390/diagnostics11050878 |
Ejemplares similares
-
COVID-19 pneumonia: high diagnostic accuracy of chest CT in patients with intermediate clinical probability
por: Brun, Anne Laure, et al.
Publicado: (2020) -
Lung Transplantation: CT Assessment of Chronic Lung Allograft Dysfunction (CLAD)
por: Brun, Anne-Laure, et al.
Publicado: (2021) -
The Potential Role of Artificial Intelligence in Lung Cancer Screening Using Low-Dose Computed Tomography
por: Grenier, Philippe A., et al.
Publicado: (2022) -
AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia
por: Chassagnon, Guillaume, et al.
Publicado: (2021) -
High incidence of hyperventilation syndrome after COVID-19
por: Taverne, Jérémie, et al.
Publicado: (2021)