Cargando…
Artificial Intelligence Applications to Improve the Treatment of Locally Advanced Non-Small Cell Lung Cancers
SIMPLE SUMMARY: The management of locally advanced (stages II–III) non-small cell lung cancer patients is very challenging because of poor survival rates and patient/tumor heterogeneity. In this review, we identify the critical points that can be addressed by artificial intelligence (AI) algorithms...
Autores principales: | Hope, Andrew, Verduin, Maikel, Dilling, Thomas J, Choudhury, Ananya, Fijten, Rianne, Wee, Leonard, Aerts, Hugo JWL, El Naqa, Issam, Mitchell, Ross, Vooijs, Marc, Dekker, Andre, de Ruysscher, Dirk, Traverso, Alberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156328/ https://www.ncbi.nlm.nih.gov/pubmed/34069307 http://dx.doi.org/10.3390/cancers13102382 |
Ejemplares similares
-
Patient-Derived Cancer Organoids as Predictors of Treatment Response
por: Verduin, Maikel, et al.
Publicado: (2021) -
FAIR‐compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head‐Neck1 TCIA collections
por: Kalendralis, Petros, et al.
Publicado: (2020) -
Interpretable artificial intelligence in radiology and radiation oncology
por: Cui, Sunan, et al.
Publicado: (2023) -
Learning from scanners: Bias reduction and feature correction in radiomics
por: Zhovannik, Ivan, et al.
Publicado: (2019) -
Distributed radiomics as a signature validation study using the Personal Health Train infrastructure
por: Shi, Zhenwei, et al.
Publicado: (2019)