Cargando…
HADF-Crowd: A Hierarchical Attention-Based Dense Feature Extraction Network for Single-Image Crowd Counting
Crowd counting is a challenging task due to large perspective, density, and scale variations. CNN-based crowd counting techniques have achieved significant performance in sparse to dense environments. However, crowd counting in high perspective-varying scenes (images) is getting harder due to differ...
Autores principales: | Ilyas, Naveed, Lee, Boreom, Kim, Kiseon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156381/ https://www.ncbi.nlm.nih.gov/pubmed/34067707 http://dx.doi.org/10.3390/s21103483 |
Ejemplares similares
-
An effective modular approach for crowd counting in an image using convolutional neural networks
por: Ilyas, Naveed, et al.
Publicado: (2022) -
Author Correction: An effective modular approach for crowd counting in an image using convolutional neural networks
por: Ilyas, Naveed, et al.
Publicado: (2022) -
Convolutional-Neural Network-Based Image Crowd Counting: Review, Categorization, Analysis, and Performance Evaluation
por: Ilyas, Naveed, et al.
Publicado: (2019) -
Multiscale Aggregate Networks with Dense Connections for Crowd Counting
por: Li, Pengfei, et al.
Publicado: (2021) -
HRANet: Hierarchical region-aware network for crowd counting
por: Xie, Jinyang, et al.
Publicado: (2022)