Cargando…

A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease

Machine learning (ML) algorithms are widely used to develop predictive frameworks. Accurate prediction of Alzheimer’s disease (AD) age of onset (ADAOO) is crucial to investigate potential treatments, follow-up, and therapeutic interventions. Although genetic and non-genetic factors affecting ADAOO w...

Descripción completa

Detalles Bibliográficos
Autores principales: Vélez, Jorge I., Samper, Luiggi A., Arcos-Holzinger, Mauricio, Espinosa, Lady G., Isaza-Ruget, Mario A., Lopera, Francisco, Arcos-Burgos, Mauricio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156402/
https://www.ncbi.nlm.nih.gov/pubmed/34067584
http://dx.doi.org/10.3390/diagnostics11050887
_version_ 1783699436897042432
author Vélez, Jorge I.
Samper, Luiggi A.
Arcos-Holzinger, Mauricio
Espinosa, Lady G.
Isaza-Ruget, Mario A.
Lopera, Francisco
Arcos-Burgos, Mauricio
author_facet Vélez, Jorge I.
Samper, Luiggi A.
Arcos-Holzinger, Mauricio
Espinosa, Lady G.
Isaza-Ruget, Mario A.
Lopera, Francisco
Arcos-Burgos, Mauricio
author_sort Vélez, Jorge I.
collection PubMed
description Machine learning (ML) algorithms are widely used to develop predictive frameworks. Accurate prediction of Alzheimer’s disease (AD) age of onset (ADAOO) is crucial to investigate potential treatments, follow-up, and therapeutic interventions. Although genetic and non-genetic factors affecting ADAOO were elucidated by other research groups and ours, the comprehensive and sequential application of ML to provide an exact estimation of the actual ADAOO, instead of a high-confidence-interval ADAOO that may fall, remains to be explored. Here, we assessed the performance of ML algorithms for predicting ADAOO using two AD cohorts with early-onset familial AD and with late-onset sporadic AD, combining genetic and demographic variables. Performance of ML algorithms was assessed using the root mean squared error (RMSE), the R-squared (R(2)), and the mean absolute error (MAE) with a 10-fold cross-validation procedure. For predicting ADAOO in familial AD, boosting-based ML algorithms performed the best. In the sporadic cohort, boosting-based ML algorithms performed best in the training data set, while regularization methods best performed for unseen data. ML algorithms represent a feasible alternative to accurately predict ADAOO with little human intervention. Future studies may include predicting the speed of cognitive decline in our cohorts using ML.
format Online
Article
Text
id pubmed-8156402
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81564022021-05-28 A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease Vélez, Jorge I. Samper, Luiggi A. Arcos-Holzinger, Mauricio Espinosa, Lady G. Isaza-Ruget, Mario A. Lopera, Francisco Arcos-Burgos, Mauricio Diagnostics (Basel) Article Machine learning (ML) algorithms are widely used to develop predictive frameworks. Accurate prediction of Alzheimer’s disease (AD) age of onset (ADAOO) is crucial to investigate potential treatments, follow-up, and therapeutic interventions. Although genetic and non-genetic factors affecting ADAOO were elucidated by other research groups and ours, the comprehensive and sequential application of ML to provide an exact estimation of the actual ADAOO, instead of a high-confidence-interval ADAOO that may fall, remains to be explored. Here, we assessed the performance of ML algorithms for predicting ADAOO using two AD cohorts with early-onset familial AD and with late-onset sporadic AD, combining genetic and demographic variables. Performance of ML algorithms was assessed using the root mean squared error (RMSE), the R-squared (R(2)), and the mean absolute error (MAE) with a 10-fold cross-validation procedure. For predicting ADAOO in familial AD, boosting-based ML algorithms performed the best. In the sporadic cohort, boosting-based ML algorithms performed best in the training data set, while regularization methods best performed for unseen data. ML algorithms represent a feasible alternative to accurately predict ADAOO with little human intervention. Future studies may include predicting the speed of cognitive decline in our cohorts using ML. MDPI 2021-05-17 /pmc/articles/PMC8156402/ /pubmed/34067584 http://dx.doi.org/10.3390/diagnostics11050887 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Vélez, Jorge I.
Samper, Luiggi A.
Arcos-Holzinger, Mauricio
Espinosa, Lady G.
Isaza-Ruget, Mario A.
Lopera, Francisco
Arcos-Burgos, Mauricio
A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease
title A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease
title_full A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease
title_fullStr A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease
title_full_unstemmed A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease
title_short A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease
title_sort comprehensive machine learning framework for the exact prediction of the age of onset in familial and sporadic alzheimer’s disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156402/
https://www.ncbi.nlm.nih.gov/pubmed/34067584
http://dx.doi.org/10.3390/diagnostics11050887
work_keys_str_mv AT velezjorgei acomprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT samperluiggia acomprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT arcosholzingermauricio acomprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT espinosaladyg acomprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT isazarugetmarioa acomprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT loperafrancisco acomprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT arcosburgosmauricio acomprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT velezjorgei comprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT samperluiggia comprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT arcosholzingermauricio comprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT espinosaladyg comprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT isazarugetmarioa comprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT loperafrancisco comprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease
AT arcosburgosmauricio comprehensivemachinelearningframeworkfortheexactpredictionoftheageofonsetinfamilialandsporadicalzheimersdisease