Cargando…
A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease
Machine learning (ML) algorithms are widely used to develop predictive frameworks. Accurate prediction of Alzheimer’s disease (AD) age of onset (ADAOO) is crucial to investigate potential treatments, follow-up, and therapeutic interventions. Although genetic and non-genetic factors affecting ADAOO w...
Autores principales: | Vélez, Jorge I., Samper, Luiggi A., Arcos-Holzinger, Mauricio, Espinosa, Lady G., Isaza-Ruget, Mario A., Lopera, Francisco, Arcos-Burgos, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156402/ https://www.ncbi.nlm.nih.gov/pubmed/34067584 http://dx.doi.org/10.3390/diagnostics11050887 |
Ejemplares similares
-
Familial Alzheimer’s Disease and Recessive Modifiers
por: Vélez, Jorge I., et al.
Publicado: (2019) -
Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease
por: Vélez, Jorge I., et al.
Publicado: (2018) -
A Mutation in DAOA Modifies the Age of Onset in PSEN1 E280A Alzheimer's Disease
por: Vélez, Jorge I., et al.
Publicado: (2016) -
Neural Plasticity during Aging
por: Arcos-Burgos, Mauricio, et al.
Publicado: (2019) -
A multifactorial model of pathology for age of onset heterogeneity in familial Alzheimer’s disease
por: Sepulveda-Falla, Diego, et al.
Publicado: (2020)