Cargando…
Attention-Guided Network with Densely Connected Convolution for Skin Lesion Segmentation
The automatic segmentation of skin lesions is considered to be a key step in the diagnosis and treatment of skin lesions, which is essential to improve the survival rate of patients. However, due to the low contrast, the texture and boundary are difficult to distinguish, which makes the accurate seg...
Autores principales: | Tao, Shengxin, Jiang, Yun, Cao, Simin, Wu, Chao, Ma, Zeqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156456/ https://www.ncbi.nlm.nih.gov/pubmed/34065771 http://dx.doi.org/10.3390/s21103462 |
Ejemplares similares
-
Skin Lesion Classification Using Densely Connected Convolutional Networks with Attention Residual Learning
por: Wu, Jing, et al.
Publicado: (2020) -
Segmentation Algorithm of Magnetic Resonance Imaging Glioma under Fully Convolutional Densely Connected Convolutional Networks
por: Dong, Jie, et al.
Publicado: (2022) -
HADCNet: Automatic segmentation of COVID-19 infection based on a hybrid attention dense connected network with dilated convolution
por: Chen, Ying, et al.
Publicado: (2022) -
PCF-Net: Position and context information fusion attention convolutional neural network for skin lesion segmentation
por: Jiang, Yun, et al.
Publicado: (2023) -
Densely Convolutional Spatial Attention Network for nuclei segmentation of histological images for computational pathology
por: Islam Sumon, Rashadul, et al.
Publicado: (2023)