Cargando…
BIFNOM: Binary-Coded Features on Normal Maps
We propose a novel method for detecting features on normal maps and describing binary features, called BIFNOM, which is three-dimensionally rotation invariant and detects and matches interest points at high speed regardless of whether a target is textured or textureless and rigid or non-rigid. Conve...
Autores principales: | Miyashita, Leo, Nakamura, Akihiro, Odagawa, Takuto, Ishikawa, Masatoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156490/ https://www.ncbi.nlm.nih.gov/pubmed/34065726 http://dx.doi.org/10.3390/s21103469 |
Ejemplares similares
-
Multi-semantic feature fusion attention network for binary code similarity detection
por: Li, Bangling, et al.
Publicado: (2023) -
Visual Calibration for Multiview Laser Doppler Speed Sensing
por: Hu, Yunpu, et al.
Publicado: (2019) -
Binary Simulated Normal Distribution Optimizer for feature selection: Theory and application in COVID-19 datasets
por: Ahmed, Shameem, et al.
Publicado: (2022) -
Super-Resolution and Feature Extraction for Ocean Bathymetric Maps Using Sparse Coding
por: Yutani, Taku, et al.
Publicado: (2022) -
Smoothing of Binary Codes, Uniform Distributions, and Applications
por: Pathegama, Madhura, et al.
Publicado: (2023)