Cargando…

Graphene-Based Two-Dimensional Mesoporous Materials: Synthesis and Electrochemical Energy Storage Applications

Graphene (G)-based two dimensional (2D) mesoporous materials combine the advantages of G, ultrathin 2D morphology, and mesoporous structures, greatly contributing to the improvement of power and energy densities of energy storage devices. Despite considerable research progress made in the past decad...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jongyoon, Lee, Jiyun, Kim, Seongseop, Hwang, Jongkook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156551/
https://www.ncbi.nlm.nih.gov/pubmed/34065776
http://dx.doi.org/10.3390/ma14102597
Descripción
Sumario:Graphene (G)-based two dimensional (2D) mesoporous materials combine the advantages of G, ultrathin 2D morphology, and mesoporous structures, greatly contributing to the improvement of power and energy densities of energy storage devices. Despite considerable research progress made in the past decade, a complete overview of G-based 2D mesoporous materials has not yet been provided. In this review, we summarize the synthesis strategies for G-based 2D mesoporous materials and their applications in supercapacitors (SCs) and lithium-ion batteries (LIBs). The general aspect of synthesis procedures and underlying mechanisms are discussed in detail. The structural and compositional advantages of G-based 2D mesoporous materials as electrodes for SCs and LIBs are highlighted. We provide our perspective on the opportunities and challenges for development of G-based 2D mesoporous materials. Therefore, we believe that this review will offer fruitful guidance for fabricating G-based 2D mesoporous materials as well as the other types of 2D heterostructures for electrochemical energy storage applications.