Cargando…

Development and Validation of Confirmatory Foot-and-Mouth Disease Virus Antibody ELISAs to Identify Infected Animals in Vaccinated Populations

In foot-and-mouth disease (FMD)-endemic countries, vaccination is commonly used to control the disease, whilst in FMD-free countries, vaccination is considered as an option, in addition to culling the infected and in contact animals. FMD vaccines are mainly comprised of inactivated virions and stimu...

Descripción completa

Detalles Bibliográficos
Autores principales: Tewari, Anuj, Ambrose, Helen, Parekh, Krupali, Inoue, Toru, Guitian, Javier, Nardo, Antonello Di, Paton, David James, Parida, Satya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156621/
https://www.ncbi.nlm.nih.gov/pubmed/34063385
http://dx.doi.org/10.3390/v13050914
_version_ 1783699488967229440
author Tewari, Anuj
Ambrose, Helen
Parekh, Krupali
Inoue, Toru
Guitian, Javier
Nardo, Antonello Di
Paton, David James
Parida, Satya
author_facet Tewari, Anuj
Ambrose, Helen
Parekh, Krupali
Inoue, Toru
Guitian, Javier
Nardo, Antonello Di
Paton, David James
Parida, Satya
author_sort Tewari, Anuj
collection PubMed
description In foot-and-mouth disease (FMD)-endemic countries, vaccination is commonly used to control the disease, whilst in FMD-free countries, vaccination is considered as an option, in addition to culling the infected and in contact animals. FMD vaccines are mainly comprised of inactivated virions and stimulate protective antibodies to virus structural proteins. In contrast, infection with FMD virus leads to virus replication and additional antibody responses to viral nonstructural proteins (NSP). Therefore, antibodies against NSPs are used to differentiate infection in vaccinated animals (DIVA), in order to estimate the prevalence of infection or its absence. Another advantage of NSP antibody tests is that they detect FMD infection in the field, irrespective of the serotypes of virus in circulation. In cattle, the NSP tests that target the 3ABC polyprotein provides the highest sensitivity, detecting up to 90% of vaccinated animals that become carriers after exposure to infection, with a specificity of around 99%. Due to insufficient diagnostic sensitivity and specificity, detection of a low level of infection is difficult at the population level with a high degree of confidence. The low level of non-specific responses can be overcome by retesting samples scored positive using a second confirmatory test, which should have at least comparable sensitivity to the first test. In this study, six in-house tests were developed incorporating different NSP antigens, and validated using bovine sera from naïve animals, field cases and experimentally vaccinated and/or infected animals. In addition, two (short and long incubation) new commercial NSP tests based on 3ABC competitive blocking ELISAs (ID Screen(®) FMD NSP Competition, IDvet, France) were validated in this study. The two commercial ELISAs had very similar sensitivities and specificities that were not improved by lengthening the incubation period. Several of the new in-house tests had performance characteristics that were nearly as good as the commercial ELISAs. Finally, the in-house tests were evaluated for use as confirmatory tests following screening with the PrioCHECK(®) and ID Screen(®) FMDV NS commercial kits, to assess the diagnostic performance produced by a multiple testing strategy. The in-house tests could be used in series (to confirm) or in parallel (to augment) with the PrioCHECK(®) and IDvet(®) FMDV NS commercial kits, in order to improve either the specificity or sensitivity of the overall test system, although this comes at the cost of a reduction in the counterpart (sensitivity/specificity) parameter.
format Online
Article
Text
id pubmed-8156621
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81566212021-05-28 Development and Validation of Confirmatory Foot-and-Mouth Disease Virus Antibody ELISAs to Identify Infected Animals in Vaccinated Populations Tewari, Anuj Ambrose, Helen Parekh, Krupali Inoue, Toru Guitian, Javier Nardo, Antonello Di Paton, David James Parida, Satya Viruses Article In foot-and-mouth disease (FMD)-endemic countries, vaccination is commonly used to control the disease, whilst in FMD-free countries, vaccination is considered as an option, in addition to culling the infected and in contact animals. FMD vaccines are mainly comprised of inactivated virions and stimulate protective antibodies to virus structural proteins. In contrast, infection with FMD virus leads to virus replication and additional antibody responses to viral nonstructural proteins (NSP). Therefore, antibodies against NSPs are used to differentiate infection in vaccinated animals (DIVA), in order to estimate the prevalence of infection or its absence. Another advantage of NSP antibody tests is that they detect FMD infection in the field, irrespective of the serotypes of virus in circulation. In cattle, the NSP tests that target the 3ABC polyprotein provides the highest sensitivity, detecting up to 90% of vaccinated animals that become carriers after exposure to infection, with a specificity of around 99%. Due to insufficient diagnostic sensitivity and specificity, detection of a low level of infection is difficult at the population level with a high degree of confidence. The low level of non-specific responses can be overcome by retesting samples scored positive using a second confirmatory test, which should have at least comparable sensitivity to the first test. In this study, six in-house tests were developed incorporating different NSP antigens, and validated using bovine sera from naïve animals, field cases and experimentally vaccinated and/or infected animals. In addition, two (short and long incubation) new commercial NSP tests based on 3ABC competitive blocking ELISAs (ID Screen(®) FMD NSP Competition, IDvet, France) were validated in this study. The two commercial ELISAs had very similar sensitivities and specificities that were not improved by lengthening the incubation period. Several of the new in-house tests had performance characteristics that were nearly as good as the commercial ELISAs. Finally, the in-house tests were evaluated for use as confirmatory tests following screening with the PrioCHECK(®) and ID Screen(®) FMDV NS commercial kits, to assess the diagnostic performance produced by a multiple testing strategy. The in-house tests could be used in series (to confirm) or in parallel (to augment) with the PrioCHECK(®) and IDvet(®) FMDV NS commercial kits, in order to improve either the specificity or sensitivity of the overall test system, although this comes at the cost of a reduction in the counterpart (sensitivity/specificity) parameter. MDPI 2021-05-15 /pmc/articles/PMC8156621/ /pubmed/34063385 http://dx.doi.org/10.3390/v13050914 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tewari, Anuj
Ambrose, Helen
Parekh, Krupali
Inoue, Toru
Guitian, Javier
Nardo, Antonello Di
Paton, David James
Parida, Satya
Development and Validation of Confirmatory Foot-and-Mouth Disease Virus Antibody ELISAs to Identify Infected Animals in Vaccinated Populations
title Development and Validation of Confirmatory Foot-and-Mouth Disease Virus Antibody ELISAs to Identify Infected Animals in Vaccinated Populations
title_full Development and Validation of Confirmatory Foot-and-Mouth Disease Virus Antibody ELISAs to Identify Infected Animals in Vaccinated Populations
title_fullStr Development and Validation of Confirmatory Foot-and-Mouth Disease Virus Antibody ELISAs to Identify Infected Animals in Vaccinated Populations
title_full_unstemmed Development and Validation of Confirmatory Foot-and-Mouth Disease Virus Antibody ELISAs to Identify Infected Animals in Vaccinated Populations
title_short Development and Validation of Confirmatory Foot-and-Mouth Disease Virus Antibody ELISAs to Identify Infected Animals in Vaccinated Populations
title_sort development and validation of confirmatory foot-and-mouth disease virus antibody elisas to identify infected animals in vaccinated populations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156621/
https://www.ncbi.nlm.nih.gov/pubmed/34063385
http://dx.doi.org/10.3390/v13050914
work_keys_str_mv AT tewarianuj developmentandvalidationofconfirmatoryfootandmouthdiseasevirusantibodyelisastoidentifyinfectedanimalsinvaccinatedpopulations
AT ambrosehelen developmentandvalidationofconfirmatoryfootandmouthdiseasevirusantibodyelisastoidentifyinfectedanimalsinvaccinatedpopulations
AT parekhkrupali developmentandvalidationofconfirmatoryfootandmouthdiseasevirusantibodyelisastoidentifyinfectedanimalsinvaccinatedpopulations
AT inouetoru developmentandvalidationofconfirmatoryfootandmouthdiseasevirusantibodyelisastoidentifyinfectedanimalsinvaccinatedpopulations
AT guitianjavier developmentandvalidationofconfirmatoryfootandmouthdiseasevirusantibodyelisastoidentifyinfectedanimalsinvaccinatedpopulations
AT nardoantonellodi developmentandvalidationofconfirmatoryfootandmouthdiseasevirusantibodyelisastoidentifyinfectedanimalsinvaccinatedpopulations
AT patondavidjames developmentandvalidationofconfirmatoryfootandmouthdiseasevirusantibodyelisastoidentifyinfectedanimalsinvaccinatedpopulations
AT paridasatya developmentandvalidationofconfirmatoryfootandmouthdiseasevirusantibodyelisastoidentifyinfectedanimalsinvaccinatedpopulations