Cargando…

Catalytic Conversion of n-C(7) Asphaltenes and Resins II into Hydrogen Using CeO(2)-Based Nanocatalysts

This study focuses on evaluating the volumetric hydrogen content in the gaseous mixture released from the steam catalytic gasification of n-C(7) asphaltenes and resins II at low temperatures (<230 °C). For this purpose, four nanocatalysts were selected: CeO(2), CeO(2) functionalized with Ni-Pd, F...

Descripción completa

Detalles Bibliográficos
Autores principales: Medina, Oscar E., Gallego, Jaime, Acevedo, Sócrates, Riazi, Masoud, Ocampo-Pérez, Raúl, Cortés, Farid B., Franco, Camilo A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156694/
https://www.ncbi.nlm.nih.gov/pubmed/34069187
http://dx.doi.org/10.3390/nano11051301
Descripción
Sumario:This study focuses on evaluating the volumetric hydrogen content in the gaseous mixture released from the steam catalytic gasification of n-C(7) asphaltenes and resins II at low temperatures (<230 °C). For this purpose, four nanocatalysts were selected: CeO(2), CeO(2) functionalized with Ni-Pd, Fe-Pd, and Co-Pd. The catalytic capacity was measured by non-isothermal (from 100 to 600 °C) and isothermal (220 °C) thermogravimetric analyses. The samples show the main decomposition peak between 200 and 230 °C for bi-elemental nanocatalysts and 300 °C for the CeO(2) support, leading to reductions up to 50% in comparison with the samples in the absence of nanoparticles. At 220 °C, the conversion of both fractions increases in the order CeO(2) < Fe-Pd < Co-Pd < Ni-Pd. Hydrogen release was quantified for the isothermal tests. The hydrogen production agrees with each material’s catalytic activity for decomposing both fractions at the evaluated conditions. CeNi1Pd1 showed the highest performance among the other three samples and led to the highest hydrogen production in the effluent gas with values of ~44 vol%. When the samples were heated at higher temperatures (i.e., 230 °C), H(2) production increased up to 55 vol% during catalyzed n-C(7) asphaltene and resin conversion, indicating an increase of up to 70% in comparison with the non-catalyzed systems at the same temperature conditions.