Cargando…
Electrochemical Characterization and Detection of Lead in Water Using SPCE Modified with BiONPs/PANI
The need for constant assessment of river water qualities for both aquatic and other biological survival has emerged a top priority, due to increasing exposure to industrial pollutants. A disposable screen print carbon electrode was modified with a conductive polymer (PANI) and Zn and/or Cu oxides N...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156766/ https://www.ncbi.nlm.nih.gov/pubmed/34069149 http://dx.doi.org/10.3390/nano11051294 |
Sumario: | The need for constant assessment of river water qualities for both aquatic and other biological survival has emerged a top priority, due to increasing exposure to industrial pollutants. A disposable screen print carbon electrode was modified with a conductive polymer (PANI) and Zn and/or Cu oxides NPs, obtained through bioreduction in citrus peel extracts (lemon and orange), for ultra-sensitive detection of PB(2+), in the Crocodile River water sample. The synthesized materials were characterized with Fourier-transform infra-red spectroscopy (FTIR), ultra-violet visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM). The SPC-modified electrodes designated as SPCE/LPE/BiONPs/PANI and SPCE/OPE/BiONPs/PANI were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and eventually deployed in the electrochemical detection of PB(2+) in water using square wave voltammetry (SWV) technique. The electrochemical responses of the modified electrodes for both CV and EIS in 0.1 M HCl demonstrated enhanced performance relative to the bare SPCE. A detection and quantification limit of 0.494 ppb and 1.647 were obtained at SPCE/LPE/BiONPs/PANI, respectively, while a detection and quantification limit of 2.79 ppb and 8.91 ppb, respectively, were derived from SPCE/OPE/BiONPs/PANI. The relative standard deviations (RSD) for SPC electrode at a 6.04 µM PB(2+) analyte concentration was 4.76% and 0.98% at SPCE/LPE/BiONPs/PANI and SPCE/LPE/BiONPs/PANI, respectively. The effect of copper, zinc, iron, cobalt, nickel, and magnesium on the stripping peaks of PB(2+) at SPCE/OPE/BiONPs/PANI, showed no significant change except for cobalt, with about 17.67% peak current drop. The sensors were assessed for possible determination of PB(2+) in spiked river water samples. The average percentage recovery and RSD calculated were 94.25% and 3.74% (n = 3) at SPCE/LPE/BiONPs/PANI and, 96.70% and 3.71% (n = 3) at SPCE/OPE/BiONPs/PANI, respectively. Therefore, the fabricated sensor material could be used for environmental assessment of this highly toxic heavy metal in the aquatic system |
---|