Cargando…
Industrial Semi-Supervised Dynamic Soft-Sensor Modeling Approach Based on Deep Relevant Representation Learning
Soft sensors based on deep learning have been growing in industrial process applications, inferring hard-to-measure but crucial quality-related variables. However, applications may present strong non-linearity, dynamicity, and a lack of labeled data. To deal with the above-cited problems, the extrac...
Autores principales: | Moreira de Lima, Jean Mário, Ugulino de Araújo, Fábio Meneghetti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156853/ https://www.ncbi.nlm.nih.gov/pubmed/34069123 http://dx.doi.org/10.3390/s21103430 |
Ejemplares similares
-
Industrial Soft Sensor Optimized by Improved PSO: A Deep Representation-Learning Approach
por: Severino, Alcemy Gabriel Vitor, et al.
Publicado: (2022) -
Online-Dynamic-Clustering-Based Soft Sensor for Industrial Semi-Supervised Data Streams
por: Wang, Yuechen, et al.
Publicado: (2023) -
Pseudo-Labeling Optimization Based Ensemble Semi-Supervised Soft Sensor in the Process Industry
por: Li, Youwei, et al.
Publicado: (2021) -
Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process
por: Zhang, Yan, et al.
Publicado: (2022) -
Assessment and Certification of Neonatal Incubator Sensors through an Inferential Neural Network
por: de Araújo Júnior, José Medeiros, et al.
Publicado: (2013)