Cargando…
Multiparametric MRI texture analysis in prediction of glioma biomarker status: added value of MR diffusion
BACKGROUND: Early identification of glioma molecular phenotypes can lead to understanding of patient prognosis and treatment guidance. We aimed to develop a multiparametric MRI texture analysis model using a combination of conventional and diffusion MRI to predict a wide range of biomarkers in patie...
Autores principales: | Kihira, Shingo, Tsankova, Nadejda M, Bauer, Adam, Sakai, Yu, Mahmoudi, Keon, Zubizarreta, Nicole, Houldsworth, Jane, Khan, Fahad, Salamon, Noriko, Hormigo, Adilia, Nael, Kambiz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156980/ https://www.ncbi.nlm.nih.gov/pubmed/34056604 http://dx.doi.org/10.1093/noajnl/vdab051 |
Ejemplares similares
-
MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting
por: Sakai, Yu, et al.
Publicado: (2020) -
U-Net Based Segmentation and Characterization of Gliomas
por: Kihira, Shingo, et al.
Publicado: (2022) -
Multi-Parametric Radiomic Model to Predict 1p/19q Co-Deletion in Patients with IDH-1 Mutant Glioma: Added Value to the T2-FLAIR Mismatch Sign
por: Kihira, Shingo, et al.
Publicado: (2023) -
Tumoral and immune heterogeneity in an anti-PD-1-responsive glioblastoma: a case study
por: Restrepo, Paula, et al.
Publicado: (2020) -
Addition of arterial spin-labelled MR perfusion to conventional brain MRI: clinical experience in a retrospective cohort study
por: Belani, Puneet, et al.
Publicado: (2020)