Cargando…
Fusion of text and graph information for machine learning problems on networks
Today, increased attention is drawn towards network representation learning, a technique that maps nodes of a network into vectors of a low-dimensional embedding space. A network embedding constructed this way aims to preserve nodes similarity and other specific network properties. Embedding vectors...
Autores principales: | Makarov, Ilya, Makarov, Mikhail, Kiselev, Dmitrii |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157042/ https://www.ncbi.nlm.nih.gov/pubmed/34084929 http://dx.doi.org/10.7717/peerj-cs.526 |
Ejemplares similares
-
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021) -
Temporal network embedding framework with causal anonymous walks representations
por: Makarov, Ilya, et al.
Publicado: (2022) -
Online supervised attention-based recurrent depth estimation from monocular video
por: Maslov, Dmitrii, et al.
Publicado: (2020) -
Dual network embedding for representing research interests in the link prediction problem on co-authorship networks
por: Makarov, Ilya, et al.
Publicado: (2019) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021)