Cargando…

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (V...

Descripción completa

Detalles Bibliográficos
Autores principales: Antonacci, Yuri, Minati, Ludovico, Faes, Luca, Pernice, Riccardo, Nollo, Giandomenico, Toppi, Jlenia, Pietrabissa, Antonio, Astolfi, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157130/
https://www.ncbi.nlm.nih.gov/pubmed/34084917
http://dx.doi.org/10.7717/peerj-cs.429
_version_ 1783699611958902784
author Antonacci, Yuri
Minati, Ludovico
Faes, Luca
Pernice, Riccardo
Nollo, Giandomenico
Toppi, Jlenia
Pietrabissa, Antonio
Astolfi, Laura
author_facet Antonacci, Yuri
Minati, Ludovico
Faes, Luca
Pernice, Riccardo
Nollo, Giandomenico
Toppi, Jlenia
Pietrabissa, Antonio
Astolfi, Laura
author_sort Antonacci, Yuri
collection PubMed
description One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Square (OLS) estimation, a viable alternative is to use Artificial Neural Networks (ANNs) implemented in a simple structure with one input and one output layer and trained in a way such that the weights matrix corresponds to the matrix of VAR parameters. In this work, we introduce an ANN combined with SS models for the computation of GC. The ANN is trained through the Stochastic Gradient Descent L1 (SGD-L1) algorithm, and a cumulative penalty inspired from penalized regression is applied to the network weights to encourage sparsity. Simulating networks of coupled Gaussian systems, we show how the combination of ANNs and SGD-L1 allows to mitigate the strong reduction in accuracy of OLS identification in settings of low ratio between number of time series points and of VAR parameters. We also report how the performances in GC estimation are influenced by the number of iterations of gradient descent and by the learning rate used for training the ANN. We recommend using some specific combinations for these parameters to optimize the performance of GC estimation. Then, the performances of ANN and OLS are compared in terms of GC magnitude and statistical significance to highlight the potential of the new approach to reconstruct causal coupling strength and network topology even in challenging conditions of data paucity. The results highlight the importance of of a proper selection of regularization parameter which determines the degree of sparsity in the estimated network. Furthermore, we apply the two approaches to real data scenarios, to study the physiological network of brain and peripheral interactions in humans under different conditions of rest and mental stress, and the effects of the newly emerged concept of remote synchronization on the information exchanged in a ring of electronic oscillators. The results highlight how ANNs provide a mesoscopic description of the information exchanged in networks of multiple interacting physiological systems, preserving the most active causal interactions between cardiovascular, respiratory and brain systems. Moreover, ANNs can reconstruct the flow of directed information in a ring of oscillators whose statistical properties can be related to those of physiological networks.
format Online
Article
Text
id pubmed-8157130
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-81571302021-06-02 Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators Antonacci, Yuri Minati, Ludovico Faes, Luca Pernice, Riccardo Nollo, Giandomenico Toppi, Jlenia Pietrabissa, Antonio Astolfi, Laura PeerJ Comput Sci Algorithms and Analysis of Algorithms One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Square (OLS) estimation, a viable alternative is to use Artificial Neural Networks (ANNs) implemented in a simple structure with one input and one output layer and trained in a way such that the weights matrix corresponds to the matrix of VAR parameters. In this work, we introduce an ANN combined with SS models for the computation of GC. The ANN is trained through the Stochastic Gradient Descent L1 (SGD-L1) algorithm, and a cumulative penalty inspired from penalized regression is applied to the network weights to encourage sparsity. Simulating networks of coupled Gaussian systems, we show how the combination of ANNs and SGD-L1 allows to mitigate the strong reduction in accuracy of OLS identification in settings of low ratio between number of time series points and of VAR parameters. We also report how the performances in GC estimation are influenced by the number of iterations of gradient descent and by the learning rate used for training the ANN. We recommend using some specific combinations for these parameters to optimize the performance of GC estimation. Then, the performances of ANN and OLS are compared in terms of GC magnitude and statistical significance to highlight the potential of the new approach to reconstruct causal coupling strength and network topology even in challenging conditions of data paucity. The results highlight the importance of of a proper selection of regularization parameter which determines the degree of sparsity in the estimated network. Furthermore, we apply the two approaches to real data scenarios, to study the physiological network of brain and peripheral interactions in humans under different conditions of rest and mental stress, and the effects of the newly emerged concept of remote synchronization on the information exchanged in a ring of electronic oscillators. The results highlight how ANNs provide a mesoscopic description of the information exchanged in networks of multiple interacting physiological systems, preserving the most active causal interactions between cardiovascular, respiratory and brain systems. Moreover, ANNs can reconstruct the flow of directed information in a ring of oscillators whose statistical properties can be related to those of physiological networks. PeerJ Inc. 2021-05-18 /pmc/articles/PMC8157130/ /pubmed/34084917 http://dx.doi.org/10.7717/peerj-cs.429 Text en © 2021 Antonacci et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
spellingShingle Algorithms and Analysis of Algorithms
Antonacci, Yuri
Minati, Ludovico
Faes, Luca
Pernice, Riccardo
Nollo, Giandomenico
Toppi, Jlenia
Pietrabissa, Antonio
Astolfi, Laura
Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
title Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
title_full Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
title_fullStr Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
title_full_unstemmed Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
title_short Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
title_sort estimation of granger causality through artificial neural networks: applications to physiological systems and chaotic electronic oscillators
topic Algorithms and Analysis of Algorithms
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157130/
https://www.ncbi.nlm.nih.gov/pubmed/34084917
http://dx.doi.org/10.7717/peerj-cs.429
work_keys_str_mv AT antonacciyuri estimationofgrangercausalitythroughartificialneuralnetworksapplicationstophysiologicalsystemsandchaoticelectronicoscillators
AT minatiludovico estimationofgrangercausalitythroughartificialneuralnetworksapplicationstophysiologicalsystemsandchaoticelectronicoscillators
AT faesluca estimationofgrangercausalitythroughartificialneuralnetworksapplicationstophysiologicalsystemsandchaoticelectronicoscillators
AT pernicericcardo estimationofgrangercausalitythroughartificialneuralnetworksapplicationstophysiologicalsystemsandchaoticelectronicoscillators
AT nollogiandomenico estimationofgrangercausalitythroughartificialneuralnetworksapplicationstophysiologicalsystemsandchaoticelectronicoscillators
AT toppijlenia estimationofgrangercausalitythroughartificialneuralnetworksapplicationstophysiologicalsystemsandchaoticelectronicoscillators
AT pietrabissaantonio estimationofgrangercausalitythroughartificialneuralnetworksapplicationstophysiologicalsystemsandchaoticelectronicoscillators
AT astolfilaura estimationofgrangercausalitythroughartificialneuralnetworksapplicationstophysiologicalsystemsandchaoticelectronicoscillators