Cargando…
Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (V...
Autores principales: | Antonacci, Yuri, Minati, Ludovico, Faes, Luca, Pernice, Riccardo, Nollo, Giandomenico, Toppi, Jlenia, Pietrabissa, Antonio, Astolfi, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157130/ https://www.ncbi.nlm.nih.gov/pubmed/34084917 http://dx.doi.org/10.7717/peerj-cs.429 |
Ejemplares similares
-
Generalized relational tensors for chaotic time series
por: A. Gromov, Vasilii, et al.
Publicado: (2023) -
A novel chaotic transient search optimization algorithm for global optimization, real-world engineering problems and feature selection
por: Altay, Osman, et al.
Publicado: (2023) -
CGCNImp: a causal graph convolutional network for multivariate time series imputation
por: Liu, Caizheng, et al.
Publicado: (2022) -
Artificial intelligence maturity model: a systematic literature review
por: Sadiq, Raghad Baker, et al.
Publicado: (2021) -
Discrete two dimensional Fourier transform in polar coordinates part II: numerical computation and approximation of the continuous transform
por: Yao, Xueyang, et al.
Publicado: (2020)