Cargando…
AndroAnalyzer: android malicious software detection based on deep learning
BACKGROUND: Technological developments have a significant effect on the development of smart devices. The use of smart devices has become widespread due to their extensive capabilities. The Android operating system is preferred in smart devices due to its open-source structure. This is the reason fo...
Autor principal: | Arslan, Recep Sinan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157142/ https://www.ncbi.nlm.nih.gov/pubmed/34084934 http://dx.doi.org/10.7717/peerj-cs.533 |
Ejemplares similares
-
FG-Droid: Grouping based feature size reduction for Android malware detection
por: Arslan, Recep Sinan
Publicado: (2022) -
Manipulation and Malicious Personalization: Exploring the Self-Disclosure Biases Exploited by Deceptive Attackers on Social Media
por: Aïmeur, Esma, et al.
Publicado: (2019) -
Android malware detection using hybrid ANFIS architecture with low computational cost convolutional layers
por: Atacak, İsmail, et al.
Publicado: (2022) -
Malware detection using static analysis in Android: a review of FeCO (features, classification, and obfuscation)
por: Jusoh, Rosmalissa, et al.
Publicado: (2021) -
Artificial intelligence for analyzing orthopedic trauma radiographs: Deep learning algorithms—are they on par with humans for diagnosing fractures?
por: Olczak, Jakub, et al.
Publicado: (2017)