Cargando…
A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach
BACKGROUND: Brain signals (EEG—Electroencephalography) are a gold standard frequently used in epilepsy prediction. It is crucial to predict epilepsy, which is common in the community. Early diagnosis is essential to reduce the treatment process of the disease and to keep the process healthier. METHO...
Autor principal: | Alhudhaif, Adi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157152/ https://www.ncbi.nlm.nih.gov/pubmed/34084928 http://dx.doi.org/10.7717/peerj-cs.523 |
Ejemplares similares
-
An effective classification framework for brain-computer interface system design based on combining of fNIRS and EEG signals
por: Alhudhaif, Adi
Publicado: (2021) -
Otitis media detection using tympanic membrane images with a novel multi-class machine learning algorithm
por: Alhudhaif, Adi, et al.
Publicado: (2021) -
The classification of EEG-based winking signals: a transfer learning and random forest pipeline
por: Mahendra Kumar, Jothi Letchumy, et al.
Publicado: (2021) -
MSCDNet-based multi-class classification of skin cancer using dermoscopy images
por: Radhika, Vankayalapati, et al.
Publicado: (2023) -
Antibody Class(es) Predictor for Epitopes (AbCPE): A Multi-Label Classification Algorithm
por: Kadam, Kiran, et al.
Publicado: (2021)