Cargando…
Satellite imagery and machine learning for identification of aridity risk in central Java Indonesia
This study aims to develop a software framework for predicting aridity using vegetation indices (VI) from LANDSAT 8 OLI images. VI data are predicted using machine learning (ml): Random Forest (RF) and Correlation and Regression Trees (CART). Comparison of prediction using Artificial Neural Network...
Autores principales: | Prasetyo, Sri Yulianto Joko, Hartomo, Kristoko Dwi, Paseleng, Mila Chrismawati |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157165/ https://www.ncbi.nlm.nih.gov/pubmed/34084916 http://dx.doi.org/10.7717/peerj-cs.415 |
Ejemplares similares
-
Deep Learning for Understanding Satellite Imagery: An Experimental Survey
por: Mohanty, Sharada Prasanna, et al.
Publicado: (2020) -
Development and evaluation of a java-based deep neural network method for drug response predictions
por: Huang, Beibei, et al.
Publicado: (2023) -
A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms
por: Hartomo, Kristoko Dwi, et al.
Publicado: (2021) -
Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest
por: Johansen, Kasper, et al.
Publicado: (2020) -
Mapping cover crop species in southeastern Michigan using Sentinel-2 satellite data and Google Earth Engine
por: Wang, Xuewei, et al.
Publicado: (2023)