Cargando…
Machine Learning Models to Predict 30-Day Mortality in Mechanically Ventilated Patients
Previous scoring models, such as the Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE II) score, do not adequately predict the mortality of patients receiving mechanical ventilation in the intensive care unit. Therefore, this study aimed to apply machine learning algorithms to i...
Autores principales: | Kim, Jong Ho, Kwon, Young Suk, Baek, Moon Seong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157228/ https://www.ncbi.nlm.nih.gov/pubmed/34069799 http://dx.doi.org/10.3390/jcm10102172 |
Ejemplares similares
-
Neuromuscular blockade in mechanically ventilated pneumonia patients with moderate to severe hypoxemia: A multicenter retrospective study
por: Baek, Moon Seong, et al.
Publicado: (2022) -
Development and Validation of a Quick Sepsis-Related Organ Failure Assessment-Based Machine-Learning Model for Mortality Prediction in Patients with Suspected Infection in the Emergency Department
por: Kwon, Young Suk, et al.
Publicado: (2020) -
Machine learning approach for the prediction of 30-day mortality in patients with sepsis-associated encephalopathy
por: Peng, Liwei, et al.
Publicado: (2022) -
Automated Machine Learning in Predicting 30-Day Mortality in Patients with Non-Cholestatic Cirrhosis
por: Yu, Chenyan, et al.
Publicado: (2022) -
Risk Factors for Mortality Among Mechanically Ventilated Patients Requiring Pleural Drainage
por: Park, Sojung, et al.
Publicado: (2022)