Cargando…
AraCust: a Saudi Telecom Tweets corpus for sentiment analysis
Comparing Arabic to other languages, Arabic lacks large corpora for Natural Language Processing (Assiri, Emam & Al-Dossari, 2018; Gamal et al., 2019). A number of scholars depended on translation from one language to another to construct their corpus (Rushdi-Saleh et al., 2011). This paper prese...
Autores principales: | Almuqren, Latifah, Cristea, Alexandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157250/ https://www.ncbi.nlm.nih.gov/pubmed/34084924 http://dx.doi.org/10.7717/peerj-cs.510 |
Ejemplares similares
-
Comprehensive sentimental analysis of tweets towards COVID-19 in Pakistan: a study on governmental preventive measures
por: Ali, Muhammad Faisal, et al.
Publicado: (2023) -
Influence of tweets and diversification on serendipitous research paper recommender systems
por: Nishioka, Chifumi, et al.
Publicado: (2020) -
Stock trend prediction using sentiment analysis
por: Xiao, Qianyi, et al.
Publicado: (2023) -
Adaptive sentiment analysis using multioutput classification: a performance comparison
por: Hariguna, Taqwa, et al.
Publicado: (2023) -
A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis
por: Rekha, KS, et al.
Publicado: (2022)