Cargando…
Non-redox doping boosts oxygen evolution electrocatalysis on hematite
The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe(2)O(3), would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157419/ https://www.ncbi.nlm.nih.gov/pubmed/34084411 http://dx.doi.org/10.1039/c9sc05669f |
_version_ | 1783699679297404928 |
---|---|
author | Nguyën, Huu Chuong Garcés-Pineda, Felipe Andrés de Fez-Febré, Mabel Galán-Mascarós, José Ramón López, Núria |
author_facet | Nguyën, Huu Chuong Garcés-Pineda, Felipe Andrés de Fez-Febré, Mabel Galán-Mascarós, José Ramón López, Núria |
author_sort | Nguyën, Huu Chuong |
collection | PubMed |
description | The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe(2)O(3), would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite its promising theoretical potential, it has demonstrated very poor OER activity under multiple experimental conditions, significantly worse than that of Co or Ni-based oxides. In the search for improving hematite performance, we have analysed the effect of doping with redox vs. non-redox active species (Ni or Zn). Our results indicate that Zn doping clearly outperforms Ni, commonly accepted as a preferred dopant. Zn-doped hematite exhibits catalytic performances close to the state-of-the-art for alkaline water splitting: reaching 10 mA cm(−2) at just 350 mV overpotential (η) at pH 13, thus twenty times that of hematite. Such a catalytic enhancement can be traced back to a dramatic change in the reaction pathway. Incorporation of Ni, as previously suggested, decreases the energetic barrier for the OER on the available centres. In contrast, Zn facilitates the appearance of a dominant and faster alternative via a two-site reaction, where the four electron oxidation reaction starts on Fe, but is completed on Zn after thermodynamically favoured proton coupled electron transfer between adjacent metal centres. This unique behaviour is prompted by the non-redox character of Zn centres, which maintain the same charge during OER. Our results open an alternative role for dopants on oxide surfaces and provide a powerful approach for catalytic optimisation of oxides, including but not limited to highly preferred all-iron oxides. |
format | Online Article Text |
id | pubmed-8157419 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-81574192021-06-02 Non-redox doping boosts oxygen evolution electrocatalysis on hematite Nguyën, Huu Chuong Garcés-Pineda, Felipe Andrés de Fez-Febré, Mabel Galán-Mascarós, José Ramón López, Núria Chem Sci Chemistry The oxygen evolution reaction (OER) is the major bottleneck to develop viable and cost-effective water electrolysis, a key process in the production of renewable fuels. Hematite, all iron α-Fe(2)O(3), would be an ideal OER catalyst in alkaline media due to its abundance and easy processing. Despite its promising theoretical potential, it has demonstrated very poor OER activity under multiple experimental conditions, significantly worse than that of Co or Ni-based oxides. In the search for improving hematite performance, we have analysed the effect of doping with redox vs. non-redox active species (Ni or Zn). Our results indicate that Zn doping clearly outperforms Ni, commonly accepted as a preferred dopant. Zn-doped hematite exhibits catalytic performances close to the state-of-the-art for alkaline water splitting: reaching 10 mA cm(−2) at just 350 mV overpotential (η) at pH 13, thus twenty times that of hematite. Such a catalytic enhancement can be traced back to a dramatic change in the reaction pathway. Incorporation of Ni, as previously suggested, decreases the energetic barrier for the OER on the available centres. In contrast, Zn facilitates the appearance of a dominant and faster alternative via a two-site reaction, where the four electron oxidation reaction starts on Fe, but is completed on Zn after thermodynamically favoured proton coupled electron transfer between adjacent metal centres. This unique behaviour is prompted by the non-redox character of Zn centres, which maintain the same charge during OER. Our results open an alternative role for dopants on oxide surfaces and provide a powerful approach for catalytic optimisation of oxides, including but not limited to highly preferred all-iron oxides. The Royal Society of Chemistry 2020-01-30 /pmc/articles/PMC8157419/ /pubmed/34084411 http://dx.doi.org/10.1039/c9sc05669f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Nguyën, Huu Chuong Garcés-Pineda, Felipe Andrés de Fez-Febré, Mabel Galán-Mascarós, José Ramón López, Núria Non-redox doping boosts oxygen evolution electrocatalysis on hematite |
title | Non-redox doping boosts oxygen evolution electrocatalysis on hematite |
title_full | Non-redox doping boosts oxygen evolution electrocatalysis on hematite |
title_fullStr | Non-redox doping boosts oxygen evolution electrocatalysis on hematite |
title_full_unstemmed | Non-redox doping boosts oxygen evolution electrocatalysis on hematite |
title_short | Non-redox doping boosts oxygen evolution electrocatalysis on hematite |
title_sort | non-redox doping boosts oxygen evolution electrocatalysis on hematite |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157419/ https://www.ncbi.nlm.nih.gov/pubmed/34084411 http://dx.doi.org/10.1039/c9sc05669f |
work_keys_str_mv | AT nguyenhuuchuong nonredoxdopingboostsoxygenevolutionelectrocatalysisonhematite AT garcespinedafelipeandres nonredoxdopingboostsoxygenevolutionelectrocatalysisonhematite AT defezfebremabel nonredoxdopingboostsoxygenevolutionelectrocatalysisonhematite AT galanmascarosjoseramon nonredoxdopingboostsoxygenevolutionelectrocatalysisonhematite AT lopeznuria nonredoxdopingboostsoxygenevolutionelectrocatalysisonhematite |