Cargando…
Simulating protein–ligand binding with neural network potentials
Drug molecules adopt a range of conformations both in solution and in their protein-bound state. The strain and reduced flexibility of bound drugs can partially counter the intermolecular interactions that drive protein–ligand binding. To make accurate computational predictions of drug binding affin...
Autores principales: | Lahey, Shae-Lynn J., Rowley, Christopher N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157423/ https://www.ncbi.nlm.nih.gov/pubmed/34084397 http://dx.doi.org/10.1039/c9sc06017k |
Ejemplares similares
-
Automatically Constructed Neural Network Potentials for Molecular Dynamics Simulation of Zinc Proteins
por: Xu, Mingyuan, et al.
Publicado: (2021) -
OnionNet-2: A Convolutional Neural Network Model for Predicting Protein-Ligand Binding Affinity Based on Residue-Atom Contacting Shells
por: Wang, Zechen, et al.
Publicado: (2021) -
AQDnet: Deep Neural
Network for Protein–Ligand
Docking Simulation
por: Shiota, Koji, et al.
Publicado: (2023) -
Adapting free energy perturbation simulations for large macrocyclic ligands: how to dissect contributions from direct binding and free ligand flexibility
por: Wallraven, Kerstin, et al.
Publicado: (2020) -
Mapping the binding site topology of amyloid protein aggregates using multivalent ligands
por: Sanna, Elena, et al.
Publicado: (2021)