Cargando…
Benchmarking the acceleration of materials discovery by sequential learning
Sequential learning (SL) strategies, i.e. iteratively updating a machine learning model to guide experiments, have been proposed to significantly accelerate materials discovery and research. Applications on computational datasets and a handful of optimization experiments have demonstrated the promis...
Autores principales: | Rohr, Brian, Stein, Helge S., Guevarra, Dan, Wang, Yu, Haber, Joel A., Aykol, Muratahan, Suram, Santosh K., Gregoire, John M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157525/ https://www.ncbi.nlm.nih.gov/pubmed/34084328 http://dx.doi.org/10.1039/c9sc05999g |
Ejemplares similares
-
Network analysis of synthesizable materials discovery
por: Aykol, Muratahan, et al.
Publicado: (2019) -
Autonomous intelligent agents for accelerated materials discovery
por: Montoya, Joseph H., et al.
Publicado: (2020) -
Agents for sequential learning using multiple-fidelity data
por: Palizhati, Aini, et al.
Publicado: (2022) -
Machine learning–accelerated design and synthesis of polyelemental heterostructures
por: Wahl, Carolin B., et al.
Publicado: (2021) -
The Materials Provenance Store
por: Statt, Michael J., et al.
Publicado: (2023)