Cargando…
Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity
Fusion of viral and host cell membranes is a critical step in the life cycle of enveloped viruses. In the case of influenza virus, it is mediated by subunit 2 of hemagglutinin (HA) glycoprotein whose N-terminal fragments insert into the target membrane and initiate lipid exchange. These isolated fra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157580/ https://www.ncbi.nlm.nih.gov/pubmed/34069905 http://dx.doi.org/10.3390/ijms22105301 |
_version_ | 1783699714040922112 |
---|---|
author | Worch, Remigiusz Dudek, Anita Borkowska, Paulina Setny, Piotr |
author_facet | Worch, Remigiusz Dudek, Anita Borkowska, Paulina Setny, Piotr |
author_sort | Worch, Remigiusz |
collection | PubMed |
description | Fusion of viral and host cell membranes is a critical step in the life cycle of enveloped viruses. In the case of influenza virus, it is mediated by subunit 2 of hemagglutinin (HA) glycoprotein whose N-terminal fragments insert into the target membrane and initiate lipid exchange. These isolated fragments, known as fusion peptides (HAfp), already possess own fusogenic activity towards liposomes. Although they have long been studied with the hope to uncover the details of HA-mediated fusion, their actual mechanism of action remains elusive. Here, we use extensive molecular dynamics simulations combined with experimental studies of three HAfp variants to fully characterize their free energy landscape and interaction with lipid bilayer. In addition to customary assumed peptides localization at lipid–water interface, we characterize membrane-spanning configurations, which turn out to be metastable for active HAfps and unstable for the fusion inactive W14A mutant. We show that, while the degree of membrane perturbation by surface peptide configurations is relatively low and does not show any mutation-related differences, the effect of deeply inserted configurations is significant and correlates with insertion depth of the N-terminal amino group which is the highest for the wild type HAfp. Finally, we demonstrate the feasibility of spontaneous peptide transition to intramembrane location and the critical role of strictly conserved tryptofan residue 14 in this process. |
format | Online Article Text |
id | pubmed-8157580 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81575802021-05-28 Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity Worch, Remigiusz Dudek, Anita Borkowska, Paulina Setny, Piotr Int J Mol Sci Article Fusion of viral and host cell membranes is a critical step in the life cycle of enveloped viruses. In the case of influenza virus, it is mediated by subunit 2 of hemagglutinin (HA) glycoprotein whose N-terminal fragments insert into the target membrane and initiate lipid exchange. These isolated fragments, known as fusion peptides (HAfp), already possess own fusogenic activity towards liposomes. Although they have long been studied with the hope to uncover the details of HA-mediated fusion, their actual mechanism of action remains elusive. Here, we use extensive molecular dynamics simulations combined with experimental studies of three HAfp variants to fully characterize their free energy landscape and interaction with lipid bilayer. In addition to customary assumed peptides localization at lipid–water interface, we characterize membrane-spanning configurations, which turn out to be metastable for active HAfps and unstable for the fusion inactive W14A mutant. We show that, while the degree of membrane perturbation by surface peptide configurations is relatively low and does not show any mutation-related differences, the effect of deeply inserted configurations is significant and correlates with insertion depth of the N-terminal amino group which is the highest for the wild type HAfp. Finally, we demonstrate the feasibility of spontaneous peptide transition to intramembrane location and the critical role of strictly conserved tryptofan residue 14 in this process. MDPI 2021-05-18 /pmc/articles/PMC8157580/ /pubmed/34069905 http://dx.doi.org/10.3390/ijms22105301 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Worch, Remigiusz Dudek, Anita Borkowska, Paulina Setny, Piotr Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity |
title | Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity |
title_full | Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity |
title_fullStr | Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity |
title_full_unstemmed | Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity |
title_short | Transient Excursions to Membrane Core as Determinants of Influenza Virus Fusion Peptide Activity |
title_sort | transient excursions to membrane core as determinants of influenza virus fusion peptide activity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157580/ https://www.ncbi.nlm.nih.gov/pubmed/34069905 http://dx.doi.org/10.3390/ijms22105301 |
work_keys_str_mv | AT worchremigiusz transientexcursionstomembranecoreasdeterminantsofinfluenzavirusfusionpeptideactivity AT dudekanita transientexcursionstomembranecoreasdeterminantsofinfluenzavirusfusionpeptideactivity AT borkowskapaulina transientexcursionstomembranecoreasdeterminantsofinfluenzavirusfusionpeptideactivity AT setnypiotr transientexcursionstomembranecoreasdeterminantsofinfluenzavirusfusionpeptideactivity |