Cargando…
Multi-Person Tracking and Crowd Behavior Detection via Particles Gradient Motion Descriptor and Improved Entropy Classifier
To prevent disasters and to control and supervise crowds, automated video surveillance has become indispensable. In today’s complex and crowded environments, manual surveillance and monitoring systems are inefficient, labor intensive, and unwieldy. Automated video surveillance systems offer promisin...
Autores principales: | Abdullah, Faisal, Ghadi, Yazeed Yasin, Gochoo, Munkhjargal, Jalal, Ahmad, Kim, Kibum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157856/ https://www.ncbi.nlm.nih.gov/pubmed/34069994 http://dx.doi.org/10.3390/e23050628 |
Ejemplares similares
-
Automatic Recognition of Human Interaction via Hybrid Descriptors and Maximum Entropy Markov Model Using Depth Sensors
por: Jalal, Ahmad, et al.
Publicado: (2020) -
Syntactic model-based human body 3D reconstruction and event classification via association based features mining and deep learning
por: Ghadi, Yazeed, et al.
Publicado: (2021) -
Detection of Salient Crowd Motion Based on Repulsive Force Network and Direction Entropy
por: Zhang, Xuguang, et al.
Publicado: (2019) -
A Hybrid Tracking System of Full-Body Motion Inside Crowds
por: Boltes, Maik, et al.
Publicado: (2021) -
A Bio-Inspired, Motion-Based Analysis of Crowd Behavior Attributes Relevance to Motion Transparency, Velocity Gradients, and Motion Patterns
por: Raudies, Florian, et al.
Publicado: (2012)