Cargando…

CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left–right symmetry breaking

Proper left–right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left–right symmetry breaking by driving chiral counterrotating cortical flows....

Descripción completa

Detalles Bibliográficos
Autores principales: Middelkoop, Teije C., Garcia-Baucells, Júlia, Quintero-Cadena, Porfirio, Pimpale, Lokesh G., Yazdi, Shahrzad, Sternberg, Paul W., Gross, Peter, Grill, Stephan W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157923/
https://www.ncbi.nlm.nih.gov/pubmed/33972425
http://dx.doi.org/10.1073/pnas.2021814118
_version_ 1783699786025664512
author Middelkoop, Teije C.
Garcia-Baucells, Júlia
Quintero-Cadena, Porfirio
Pimpale, Lokesh G.
Yazdi, Shahrzad
Sternberg, Paul W.
Gross, Peter
Grill, Stephan W.
author_facet Middelkoop, Teije C.
Garcia-Baucells, Júlia
Quintero-Cadena, Porfirio
Pimpale, Lokesh G.
Yazdi, Shahrzad
Sternberg, Paul W.
Gross, Peter
Grill, Stephan W.
author_sort Middelkoop, Teije C.
collection PubMed
description Proper left–right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left–right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left–right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin–dependent manner. Altogether, we conclude that CYK-1/Formin–dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left–right symmetry breaking in the nematode worm.
format Online
Article
Text
id pubmed-8157923
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-81579232021-05-28 CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left–right symmetry breaking Middelkoop, Teije C. Garcia-Baucells, Júlia Quintero-Cadena, Porfirio Pimpale, Lokesh G. Yazdi, Shahrzad Sternberg, Paul W. Gross, Peter Grill, Stephan W. Proc Natl Acad Sci U S A Biological Sciences Proper left–right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left–right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left–right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin–dependent manner. Altogether, we conclude that CYK-1/Formin–dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left–right symmetry breaking in the nematode worm. National Academy of Sciences 2021-05-18 2021-05-10 /pmc/articles/PMC8157923/ /pubmed/33972425 http://dx.doi.org/10.1073/pnas.2021814118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Middelkoop, Teije C.
Garcia-Baucells, Júlia
Quintero-Cadena, Porfirio
Pimpale, Lokesh G.
Yazdi, Shahrzad
Sternberg, Paul W.
Gross, Peter
Grill, Stephan W.
CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left–right symmetry breaking
title CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left–right symmetry breaking
title_full CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left–right symmetry breaking
title_fullStr CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left–right symmetry breaking
title_full_unstemmed CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left–right symmetry breaking
title_short CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left–right symmetry breaking
title_sort cyk-1/formin activation in cortical rhoa signaling centers promotes organismal left–right symmetry breaking
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157923/
https://www.ncbi.nlm.nih.gov/pubmed/33972425
http://dx.doi.org/10.1073/pnas.2021814118
work_keys_str_mv AT middelkoopteijec cyk1forminactivationincorticalrhoasignalingcenterspromotesorganismalleftrightsymmetrybreaking
AT garciabaucellsjulia cyk1forminactivationincorticalrhoasignalingcenterspromotesorganismalleftrightsymmetrybreaking
AT quinterocadenaporfirio cyk1forminactivationincorticalrhoasignalingcenterspromotesorganismalleftrightsymmetrybreaking
AT pimpalelokeshg cyk1forminactivationincorticalrhoasignalingcenterspromotesorganismalleftrightsymmetrybreaking
AT yazdishahrzad cyk1forminactivationincorticalrhoasignalingcenterspromotesorganismalleftrightsymmetrybreaking
AT sternbergpaulw cyk1forminactivationincorticalrhoasignalingcenterspromotesorganismalleftrightsymmetrybreaking
AT grosspeter cyk1forminactivationincorticalrhoasignalingcenterspromotesorganismalleftrightsymmetrybreaking
AT grillstephanw cyk1forminactivationincorticalrhoasignalingcenterspromotesorganismalleftrightsymmetrybreaking