Cargando…
Brain Tumor Segmentation via Multi-Modalities Interactive Feature Learning
Automatic segmentation of brain tumors from multi-modalities magnetic resonance image data has the potential to enable preoperative planning and intraoperative volume measurement. Recent advances in deep convolutional neural network technology have opened up an opportunity to achieve end-to-end segm...
Autores principales: | Wang, Bo, Yang, Jingyi, Peng, Hong, Ai, Jingyang, An, Lihua, Yang, Bo, You, Zheng, Ma, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158657/ https://www.ncbi.nlm.nih.gov/pubmed/34055832 http://dx.doi.org/10.3389/fmed.2021.653925 |
Ejemplares similares
-
Accurate Tumor Segmentation via Octave Convolution Neural Network
por: Wang, Bo, et al.
Publicado: (2021) -
Overview of Multi-Modal Brain Tumor MR Image Segmentation
por: Zhang, Wenyin, et al.
Publicado: (2021) -
Deep fusion of multi-modal features for brain tumor image segmentation
por: Zhang, Guying, et al.
Publicado: (2023) -
Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets
por: Zhang, Yue, et al.
Publicado: (2021) -
Detecting glaucoma from multi-modal data using probabilistic deep learning
por: Huang, Xiaoqin, et al.
Publicado: (2022)