Cargando…
Computational Offloading in Mobile Edge with Comprehensive and Energy Efficient Cost Function: A Deep Learning Approach
In mobile edge computing (MEC), partial computational offloading can be intelligently investigated to reduce the energy consumption and service delay of user equipment (UE) by dividing a single task into different components. Some of the components execute locally on the UE while the remaining are o...
Autores principales: | Abbas, Ziaul Haq, Ali, Zaiwar, Abbas, Ghulam, Jiao, Lei, Bilal, Muhammad, Suh, Doug-Young, Piran, Md. Jalil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158712/ https://www.ncbi.nlm.nih.gov/pubmed/34069364 http://dx.doi.org/10.3390/s21103523 |
Ejemplares similares
-
An Efficient Computation Offloading Strategy with Mobile Edge Computing for IoT
por: Fang, Juan, et al.
Publicado: (2021) -
Deep Learning-Based Dynamic Computation Task Offloading for Mobile Edge Computing Networks
por: Yang, Shicheng, et al.
Publicado: (2022) -
Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing
por: Yu, Zijia, et al.
Publicado: (2022) -
DRL-OS: A Deep Reinforcement Learning-Based Offloading Scheduler in Mobile Edge Computing
por: Lim, Ducsun, et al.
Publicado: (2022) -
Mobility-Included DNN Partition Offloading from Mobile Devices to Edge Clouds
por: Tian, Xianzhong, et al.
Publicado: (2021)