Cargando…
Determining the Optimal Conditions for the Production by Supercritical CO(2) of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment
Poly(D,L,-lactide-co-glycolide) (PLGA) foam samples impregnated with rutin were successfully produced by supercritical foaming processes. A number of parameters such as pressure (80–200 bar), temperature (35–55 °C), depressurization rate (5–100 bar/min), ratio lactide:glycolide of the poly(D,L,-lact...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158779/ https://www.ncbi.nlm.nih.gov/pubmed/34069337 http://dx.doi.org/10.3390/polym13101645 |
_version_ | 1783699937982152704 |
---|---|
author | Valor, Diego Montes, Antonio Monteiro, Marilia García-Casas, Ignacio Pereyra, Clara Martínez de la Ossa, Enrique |
author_facet | Valor, Diego Montes, Antonio Monteiro, Marilia García-Casas, Ignacio Pereyra, Clara Martínez de la Ossa, Enrique |
author_sort | Valor, Diego |
collection | PubMed |
description | Poly(D,L,-lactide-co-glycolide) (PLGA) foam samples impregnated with rutin were successfully produced by supercritical foaming processes. A number of parameters such as pressure (80–200 bar), temperature (35–55 °C), depressurization rate (5–100 bar/min), ratio lactide:glycolide of the poly(D,L,-lactide-co-glycolide) (50:50 and 75:25) were studied to determine their effect on the expansion factor and on the glass transition temperature of the polymer foams and their consequences on the release profile of the rutin entrapped in them. The impregnated foams were characterized by scanning electron microscopy, differential scanning calorimetry, and mercury intrusion porosimetry. A greater impregnation of rutin into the polymer foam pores was observed as pressure was increased. The release of rutin in a phosphate buffer solution was investigated. The controlled release tests confirmed that the modification of certain variables would result in considerable differences in the drug release profiles. Thus, five-day drug release periods were achieved under high pressure and temperature while the depressurization rate remained low. |
format | Online Article Text |
id | pubmed-8158779 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81587792021-05-28 Determining the Optimal Conditions for the Production by Supercritical CO(2) of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment Valor, Diego Montes, Antonio Monteiro, Marilia García-Casas, Ignacio Pereyra, Clara Martínez de la Ossa, Enrique Polymers (Basel) Article Poly(D,L,-lactide-co-glycolide) (PLGA) foam samples impregnated with rutin were successfully produced by supercritical foaming processes. A number of parameters such as pressure (80–200 bar), temperature (35–55 °C), depressurization rate (5–100 bar/min), ratio lactide:glycolide of the poly(D,L,-lactide-co-glycolide) (50:50 and 75:25) were studied to determine their effect on the expansion factor and on the glass transition temperature of the polymer foams and their consequences on the release profile of the rutin entrapped in them. The impregnated foams were characterized by scanning electron microscopy, differential scanning calorimetry, and mercury intrusion porosimetry. A greater impregnation of rutin into the polymer foam pores was observed as pressure was increased. The release of rutin in a phosphate buffer solution was investigated. The controlled release tests confirmed that the modification of certain variables would result in considerable differences in the drug release profiles. Thus, five-day drug release periods were achieved under high pressure and temperature while the depressurization rate remained low. MDPI 2021-05-19 /pmc/articles/PMC8158779/ /pubmed/34069337 http://dx.doi.org/10.3390/polym13101645 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Valor, Diego Montes, Antonio Monteiro, Marilia García-Casas, Ignacio Pereyra, Clara Martínez de la Ossa, Enrique Determining the Optimal Conditions for the Production by Supercritical CO(2) of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment |
title | Determining the Optimal Conditions for the Production by Supercritical CO(2) of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment |
title_full | Determining the Optimal Conditions for the Production by Supercritical CO(2) of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment |
title_fullStr | Determining the Optimal Conditions for the Production by Supercritical CO(2) of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment |
title_full_unstemmed | Determining the Optimal Conditions for the Production by Supercritical CO(2) of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment |
title_short | Determining the Optimal Conditions for the Production by Supercritical CO(2) of Biodegradable PLGA Foams for the Controlled Release of Rutin as a Medical Treatment |
title_sort | determining the optimal conditions for the production by supercritical co(2) of biodegradable plga foams for the controlled release of rutin as a medical treatment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158779/ https://www.ncbi.nlm.nih.gov/pubmed/34069337 http://dx.doi.org/10.3390/polym13101645 |
work_keys_str_mv | AT valordiego determiningtheoptimalconditionsfortheproductionbysupercriticalco2ofbiodegradableplgafoamsforthecontrolledreleaseofrutinasamedicaltreatment AT montesantonio determiningtheoptimalconditionsfortheproductionbysupercriticalco2ofbiodegradableplgafoamsforthecontrolledreleaseofrutinasamedicaltreatment AT monteiromarilia determiningtheoptimalconditionsfortheproductionbysupercriticalco2ofbiodegradableplgafoamsforthecontrolledreleaseofrutinasamedicaltreatment AT garciacasasignacio determiningtheoptimalconditionsfortheproductionbysupercriticalco2ofbiodegradableplgafoamsforthecontrolledreleaseofrutinasamedicaltreatment AT pereyraclara determiningtheoptimalconditionsfortheproductionbysupercriticalco2ofbiodegradableplgafoamsforthecontrolledreleaseofrutinasamedicaltreatment AT martinezdelaossaenrique determiningtheoptimalconditionsfortheproductionbysupercriticalco2ofbiodegradableplgafoamsforthecontrolledreleaseofrutinasamedicaltreatment |