Cargando…
Causal graph analysis of COVID-19 observational data in German districts reveals effects of determining factors on reported case numbers
Several determinants are suspected to be causal drivers for new cases of COVID-19 infection. Correcting for possible confounders, we estimated the effects of the most prominent determining factors on reported case numbers. To this end, we used a directed acyclic graph (DAG) as a graphical representa...
Autores principales: | Steiger, Edgar, Mussgnug, Tobias, Kroll, Lars Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158986/ https://www.ncbi.nlm.nih.gov/pubmed/34043653 http://dx.doi.org/10.1371/journal.pone.0237277 |
Ejemplares similares
-
Assessing statistical significance in causal graphs
por: Chindelevitch, Leonid, et al.
Publicado: (2012) -
Causal inference and observational data
por: Olier, Ivan, et al.
Publicado: (2023) -
Normalized Multivariate Time Series Causality Analysis and Causal Graph Reconstruction
por: Liang, X. San
Publicado: (2021) -
Directed acyclic graphs and causal thinking in clinical risk prediction modeling
por: Piccininni, Marco, et al.
Publicado: (2020) -
Entropy-Based Discovery of Summary Causal Graphs in Time Series
por: Assaad, Charles K., et al.
Publicado: (2022)