Cargando…
Deep Learning Methods for Improving Pollen Monitoring
The risk of pollen-induced allergies can be determined and predicted based on data derived from pollen monitoring. Hirst-type samplers are sensors that allow airborne pollen grains to be detected and their number to be determined. Airborne pollen grains are deposited on adhesive-coated tape, and sli...
Autores principales: | Kubera, Elżbieta, Kubik-Komar, Agnieszka, Piotrowska-Weryszko, Krystyna, Skrzypiec, Magdalena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159113/ https://www.ncbi.nlm.nih.gov/pubmed/34069411 http://dx.doi.org/10.3390/s21103526 |
Ejemplares similares
-
Detection and Recognition of Pollen Grains in Multilabel Microscopic Images
por: Kubera, Elżbieta, et al.
Publicado: (2022) -
Selection of morphological features of pollen grains for chosen tree taxa
por: Kubik-Komar, Agnieszka, et al.
Publicado: (2018) -
Analysis of changes in Betula pollen season start including the cycle of pollen concentration in atmospheric air
por: Kubik-Komar, Agnieszka, et al.
Publicado: (2021) -
The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland)
por: Piotrowska, Krystyna, et al.
Publicado: (2012) -
Variation in the Concentration of Tilia spp. Pollen in the Aeroplankton of Lublin and Szczecin, Poland
por: Weryszko-Chmielewska, Elżbieta, et al.
Publicado: (2023)