Cargando…
Impact of PP Impurities on ABS Tensile Properties: Computational Mechanical Modelling Aspects
Recycling of plastics is hindered by their important variety and strong incompatibility. However, sorting technologies bear costs and meet limits. Very high purities (<2 wt%) are difficult to reach. Yet, such rates may be detrimental to functional properties. In this work, an ABS matrix (major pl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159121/ https://www.ncbi.nlm.nih.gov/pubmed/34069410 http://dx.doi.org/10.3390/polym13101647 |
_version_ | 1783700014660321280 |
---|---|
author | Signoret, Charles Caro-Bretelle, Anne-Sophie Lopez-Cuesta, José-Marie Ienny, Patrick Perrin, Didier |
author_facet | Signoret, Charles Caro-Bretelle, Anne-Sophie Lopez-Cuesta, José-Marie Ienny, Patrick Perrin, Didier |
author_sort | Signoret, Charles |
collection | PubMed |
description | Recycling of plastics is hindered by their important variety and strong incompatibility. However, sorting technologies bear costs and meet limits. Very high purities (<2 wt%) are difficult to reach. Yet, such rates may be detrimental to functional properties. In this work, an ABS matrix (major plastic in Waste of Electrical and Electronic Equipments) was filled with 4 wt% of PP to mimic impurities in ABS after recycling. PP-g-MA was introduced in the blend to improve the compatibility. A finite element model was developed from the mechanical behavior of each component. ABS and PP were individually characterized from tensile tests instrumented with photomechanics and their behaviors were modelled through a set of numerical parameters (elasto-visco-plasticity with a Gurson’s criterion behavior). Comparison between the determinist model results and the experimental data (strength, volumetric variation) shows that this type of modelling could be a predictive tool in order to anticipate composite mechanical properties and to understand micromechanisms of deformation (damage, cavitation). The main result is that PP introduced at 4 wt% into ABS does not alter the static mechanical properties despite polymers incompatibility. The addition of PP-g-MA modifies the local properties and possibly conduct to a premature breakage of the polymer blend. |
format | Online Article Text |
id | pubmed-8159121 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81591212021-05-28 Impact of PP Impurities on ABS Tensile Properties: Computational Mechanical Modelling Aspects Signoret, Charles Caro-Bretelle, Anne-Sophie Lopez-Cuesta, José-Marie Ienny, Patrick Perrin, Didier Polymers (Basel) Article Recycling of plastics is hindered by their important variety and strong incompatibility. However, sorting technologies bear costs and meet limits. Very high purities (<2 wt%) are difficult to reach. Yet, such rates may be detrimental to functional properties. In this work, an ABS matrix (major plastic in Waste of Electrical and Electronic Equipments) was filled with 4 wt% of PP to mimic impurities in ABS after recycling. PP-g-MA was introduced in the blend to improve the compatibility. A finite element model was developed from the mechanical behavior of each component. ABS and PP were individually characterized from tensile tests instrumented with photomechanics and their behaviors were modelled through a set of numerical parameters (elasto-visco-plasticity with a Gurson’s criterion behavior). Comparison between the determinist model results and the experimental data (strength, volumetric variation) shows that this type of modelling could be a predictive tool in order to anticipate composite mechanical properties and to understand micromechanisms of deformation (damage, cavitation). The main result is that PP introduced at 4 wt% into ABS does not alter the static mechanical properties despite polymers incompatibility. The addition of PP-g-MA modifies the local properties and possibly conduct to a premature breakage of the polymer blend. MDPI 2021-05-19 /pmc/articles/PMC8159121/ /pubmed/34069410 http://dx.doi.org/10.3390/polym13101647 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Signoret, Charles Caro-Bretelle, Anne-Sophie Lopez-Cuesta, José-Marie Ienny, Patrick Perrin, Didier Impact of PP Impurities on ABS Tensile Properties: Computational Mechanical Modelling Aspects |
title | Impact of PP Impurities on ABS Tensile Properties: Computational Mechanical Modelling Aspects |
title_full | Impact of PP Impurities on ABS Tensile Properties: Computational Mechanical Modelling Aspects |
title_fullStr | Impact of PP Impurities on ABS Tensile Properties: Computational Mechanical Modelling Aspects |
title_full_unstemmed | Impact of PP Impurities on ABS Tensile Properties: Computational Mechanical Modelling Aspects |
title_short | Impact of PP Impurities on ABS Tensile Properties: Computational Mechanical Modelling Aspects |
title_sort | impact of pp impurities on abs tensile properties: computational mechanical modelling aspects |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159121/ https://www.ncbi.nlm.nih.gov/pubmed/34069410 http://dx.doi.org/10.3390/polym13101647 |
work_keys_str_mv | AT signoretcharles impactofppimpuritiesonabstensilepropertiescomputationalmechanicalmodellingaspects AT carobretelleannesophie impactofppimpuritiesonabstensilepropertiescomputationalmechanicalmodellingaspects AT lopezcuestajosemarie impactofppimpuritiesonabstensilepropertiescomputationalmechanicalmodellingaspects AT iennypatrick impactofppimpuritiesonabstensilepropertiescomputationalmechanicalmodellingaspects AT perrindidier impactofppimpuritiesonabstensilepropertiescomputationalmechanicalmodellingaspects |