Cargando…

Inhibition of Antiestrogen-Promoted Pro-Survival Autophagy and Tamoxifen Resistance in Breast Cancer through Vitamin D Receptor

We determined how vitamin D receptor (VDR) is linked to disease outcome in estrogen receptor-positive (ER+) breast cancer patients treated with tamoxifen (TAM). Breast cancer patients (n = 581) in four different datasets were divided into those expressing higher (above median) and lower levels of VD...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ye, Cook, Katherine L, Yu, Wei, Jin, Lu, Bouker, Kerrie B, Clarke, Robert, Hilakivi-Clarke, Leena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159129/
https://www.ncbi.nlm.nih.gov/pubmed/34069442
http://dx.doi.org/10.3390/nu13051715
Descripción
Sumario:We determined how vitamin D receptor (VDR) is linked to disease outcome in estrogen receptor-positive (ER+) breast cancer patients treated with tamoxifen (TAM). Breast cancer patients (n = 581) in four different datasets were divided into those expressing higher (above median) and lower levels of VDR in pretreatment ER+ tumors. Across all datasets, TAM-treated patients with higher pretreatment tumor VDR expression exhibited significantly longer recurrence-free survival. Ingenuity pathway analysis identified autophagy and unfolded protein response (UPR) as top differentially expressed pathways between high and low VDR-expressing ER+ cancers. Activation of VDR with vitamin D (VitD), either calcitriol or its synthetic analog EB1089, sensitized MCF-7-derived, antiestrogen-resistant LCC9 human breast cancer cells to TAM, and attenuated increased UPR and pro-survival autophagy. Silencing of VDR blocked these effects through the IRE1α-JNK pathway. Further, silencing of VDR impaired sensitivity to TAM in antiestrogen-responsive LCC1 cells, and prevented the effects of calcitriol and EB1089 on UPR and autophagy. In a preclinical mouse model, dietary VitD supplementation induced VDR activation and reduced carcinogen-induced ER+ mammary tumor incidence. In addition, IRE1α-JNK signaling was downregulated and survival autophagy was inhibited in mammary tumors of VitD-supplemented mice. Thus, activation of VDR is predictive of reduced risk of breast cancer recurrence in ER+ patients, possibly by inhibiting antiestrogen-promoted pro-survival autophagy.