Cargando…

Toward an Estimation of the Optical Feedback Factor C on the Fly for Displacement Sensing

In this paper, a method based on the inherent event-based sampling capability of laser optical feedback interferometry (OFI) is proposed to assess the optical feedback factor C when the laser operates in the moderate and strong feedback regimes. Most of the phase unwrapping open-loop OFI algorithms...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernal, Olivier D., Zabit, Usman, Jayat, Francis, Bosch, Thierry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159145/
https://www.ncbi.nlm.nih.gov/pubmed/34069430
http://dx.doi.org/10.3390/s21103528
_version_ 1783700020349894656
author Bernal, Olivier D.
Zabit, Usman
Jayat, Francis
Bosch, Thierry
author_facet Bernal, Olivier D.
Zabit, Usman
Jayat, Francis
Bosch, Thierry
author_sort Bernal, Olivier D.
collection PubMed
description In this paper, a method based on the inherent event-based sampling capability of laser optical feedback interferometry (OFI) is proposed to assess the optical feedback factor C when the laser operates in the moderate and strong feedback regimes. Most of the phase unwrapping open-loop OFI algorithms rely on the estimation of C to retrieve the displacement with nanometric precision. Here, the proposed method operates in open-loop configuration and relies only on OFI’s fringe detection, thereby improving its robustness and ease of use. The proposed method is able to estimate C with a precision of <5%. The obtained performances are compared to three different approaches previously published and the impacts of phase noise and sampling frequency are reported. We also show that this method can assess C on the fly even when C is varying due to speckle. To the best of the authors’ knowledge, these are the first reported results of time-varying C estimation. In addition, through C estimation over time, it could pave the way not only to higher performance phase unwrapping algorithms but also to a better control of the optical feedback level via the use of an adaptive lens and thus to better displacement retrieval performances.
format Online
Article
Text
id pubmed-8159145
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81591452021-05-28 Toward an Estimation of the Optical Feedback Factor C on the Fly for Displacement Sensing Bernal, Olivier D. Zabit, Usman Jayat, Francis Bosch, Thierry Sensors (Basel) Article In this paper, a method based on the inherent event-based sampling capability of laser optical feedback interferometry (OFI) is proposed to assess the optical feedback factor C when the laser operates in the moderate and strong feedback regimes. Most of the phase unwrapping open-loop OFI algorithms rely on the estimation of C to retrieve the displacement with nanometric precision. Here, the proposed method operates in open-loop configuration and relies only on OFI’s fringe detection, thereby improving its robustness and ease of use. The proposed method is able to estimate C with a precision of <5%. The obtained performances are compared to three different approaches previously published and the impacts of phase noise and sampling frequency are reported. We also show that this method can assess C on the fly even when C is varying due to speckle. To the best of the authors’ knowledge, these are the first reported results of time-varying C estimation. In addition, through C estimation over time, it could pave the way not only to higher performance phase unwrapping algorithms but also to a better control of the optical feedback level via the use of an adaptive lens and thus to better displacement retrieval performances. MDPI 2021-05-19 /pmc/articles/PMC8159145/ /pubmed/34069430 http://dx.doi.org/10.3390/s21103528 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bernal, Olivier D.
Zabit, Usman
Jayat, Francis
Bosch, Thierry
Toward an Estimation of the Optical Feedback Factor C on the Fly for Displacement Sensing
title Toward an Estimation of the Optical Feedback Factor C on the Fly for Displacement Sensing
title_full Toward an Estimation of the Optical Feedback Factor C on the Fly for Displacement Sensing
title_fullStr Toward an Estimation of the Optical Feedback Factor C on the Fly for Displacement Sensing
title_full_unstemmed Toward an Estimation of the Optical Feedback Factor C on the Fly for Displacement Sensing
title_short Toward an Estimation of the Optical Feedback Factor C on the Fly for Displacement Sensing
title_sort toward an estimation of the optical feedback factor c on the fly for displacement sensing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159145/
https://www.ncbi.nlm.nih.gov/pubmed/34069430
http://dx.doi.org/10.3390/s21103528
work_keys_str_mv AT bernalolivierd towardanestimationoftheopticalfeedbackfactorcontheflyfordisplacementsensing
AT zabitusman towardanestimationoftheopticalfeedbackfactorcontheflyfordisplacementsensing
AT jayatfrancis towardanestimationoftheopticalfeedbackfactorcontheflyfordisplacementsensing
AT boschthierry towardanestimationoftheopticalfeedbackfactorcontheflyfordisplacementsensing