Cargando…
Too many zeros and/or highly skewed? A tutorial on modelling health behaviour as count data with Poisson and negative binomial regression
Background: Dependent variables in health psychology are often counts, for example, of a behaviour or number of engagements with an intervention. These counts can be very strongly skewed, and/or contain large numbers of zeros as well as extreme outliers. For example, ‘How many cigarettes do you smok...
Autor principal: | Green, James A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Routledge
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159206/ https://www.ncbi.nlm.nih.gov/pubmed/34104569 http://dx.doi.org/10.1080/21642850.2021.1920416 |
Ejemplares similares
-
Zero inflated Poisson and negative binomial regression models: application in education
por: Salehi, Masoud, et al.
Publicado: (2015) -
Infants’ gut microbiome data: A Bayesian Marginal Zero-inflated Negative Binomial regression model for multivariate analyses of count data
por: Hajihosseini, Morteza, et al.
Publicado: (2023) -
Factors related to baseline CD4 cell counts in HIV/AIDS patients: comparison of poisson, generalized poisson and negative binomial regression models
por: Farhadian, Maryam, et al.
Publicado: (2021) -
Odds ratios from logistic, geometric, Poisson, and negative binomial regression models
por: Sroka, Christopher J., et al.
Publicado: (2018) -
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
por: L. Lun, Aaron T., et al.
Publicado: (2016)