Cargando…
Machine-enabled inverse design of inorganic solid materials: promises and challenges
Developing high-performance advanced materials requires a deeper insight and search into the chemical space. Until recently, exploration of materials space using chemical intuitions built upon existing materials has been the general strategy, but this direct design approach is often time and resourc...
Autores principales: | Noh, Juhwan, Gu, Geun Ho, Kim, Sungwon, Jung, Yousung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159218/ https://www.ncbi.nlm.nih.gov/pubmed/34122942 http://dx.doi.org/10.1039/d0sc00594k |
Ejemplares similares
-
Predicting potentially hazardous chemical reactions using an explainable neural network
por: Kim, Juhwan, et al.
Publicado: (2021) -
Generative Adversarial Networks for Crystal Structure
Prediction
por: Kim, Sungwon, et al.
Publicado: (2020) -
Correction to “Generative Adversarial Networks
for Crystal Structure Prediction”
por: Kim, Sungwon, et al.
Publicado: (2022) -
Active learning with non-ab initio input features toward efficient CO(2) reduction catalysts
por: Noh, Juhwan, et al.
Publicado: (2018) -
Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions
por: Choi, Changhyeok, et al.
Publicado: (2021)