Cargando…

Redox deracemization of β,γ-alkynyl α-amino esters

The first non-enzymatic redox deracemization method using molecular oxygen as the terminal oxidant has been described. The one-pot deracemization of β,γ-alkynyl α-amino esters consisted of a copper-catalyzed aerobic oxidation and chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lu, Zhu, Rongxiu, Feng, Aili, Zhao, Changyin, Chen, Lei, Feng, Guidong, Liu, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159540/
https://www.ncbi.nlm.nih.gov/pubmed/34122901
http://dx.doi.org/10.1039/d0sc00944j
Descripción
Sumario:The first non-enzymatic redox deracemization method using molecular oxygen as the terminal oxidant has been described. The one-pot deracemization of β,γ-alkynyl α-amino esters consisted of a copper-catalyzed aerobic oxidation and chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation with excellent functional group compatibility. By using benzothiazoline as the reducing reagent, an exclusive chemoselectivity at the C[double bond, length as m-dash]N bond over the C[triple bond, length as m-dash]C bond was achieved, allowing for efficient deracemization of a series of α-amino esters bearing diverse α-alkynyl substituent patterns. The origins of chemo- and enantio-selectivities were elucidated by experimental and computational mechanistic investigation. The generality of the strategy is further demonstrated by efficient deracemization of β,γ-alkenyl α-amino esters.