Cargando…

Health Sentinel: A mobile crowdsourcing platform for self-reported surveys provides early detection of COVID-19 clusters in San Luis Potosí, Mexico

BACKGROUND: The Health Sentinel (Centinela de la Salud, CDS), a mobile crowdsourcing platform that includes the CDS app, was deployed to assess its utility as a tool for COVID-19 surveillance in San Luis Potosí, Mexico. METHODS: The CDS app allowed anonymized individual surveys of demographic featur...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz-Correa, Salvador, López-Revilla, Rubén, Díaz-Barriga, Fernando, Marmolejo-Cossío, Francisco, del Carmen Robledo-Valero, Viridiana, Hernández-Huérfano, Emilio Ernesto, Álvarez-Rivera, Leonardo, Rangel-Martínez, Mónica Liliana, Lutzow-Steiner, Miguel Ángel, Ortiz-Vázquez, Luis Alfredo, Mendoza-Lara, Andrea Rebeca, Olivo-Rodríguez, Montserrat, Galván-Ramírez, Marco Sebastián, Morales-Neri, Ángel Emanuel, Martínez-Donjuan, Víctor Uriel, Cervantes-Irurzo, Massiel Isabella, Comas-García, Andreu, Hernández-Maldonado, Fernando, Aguilar-Acosta, Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159707/
https://www.ncbi.nlm.nih.gov/pubmed/34098316
http://dx.doi.org/10.1016/j.ijmedinf.2021.104508
_version_ 1783700140396118016
author Ruiz-Correa, Salvador
López-Revilla, Rubén
Díaz-Barriga, Fernando
Marmolejo-Cossío, Francisco
del Carmen Robledo-Valero, Viridiana
Hernández-Huérfano, Emilio Ernesto
Álvarez-Rivera, Leonardo
Rangel-Martínez, Mónica Liliana
Lutzow-Steiner, Miguel Ángel
Ortiz-Vázquez, Luis Alfredo
Mendoza-Lara, Andrea Rebeca
Olivo-Rodríguez, Montserrat
Galván-Ramírez, Marco Sebastián
Morales-Neri, Ángel Emanuel
Martínez-Donjuan, Víctor Uriel
Cervantes-Irurzo, Massiel Isabella
Comas-García, Andreu
Hernández-Maldonado, Fernando
Aguilar-Acosta, Carlos
author_facet Ruiz-Correa, Salvador
López-Revilla, Rubén
Díaz-Barriga, Fernando
Marmolejo-Cossío, Francisco
del Carmen Robledo-Valero, Viridiana
Hernández-Huérfano, Emilio Ernesto
Álvarez-Rivera, Leonardo
Rangel-Martínez, Mónica Liliana
Lutzow-Steiner, Miguel Ángel
Ortiz-Vázquez, Luis Alfredo
Mendoza-Lara, Andrea Rebeca
Olivo-Rodríguez, Montserrat
Galván-Ramírez, Marco Sebastián
Morales-Neri, Ángel Emanuel
Martínez-Donjuan, Víctor Uriel
Cervantes-Irurzo, Massiel Isabella
Comas-García, Andreu
Hernández-Maldonado, Fernando
Aguilar-Acosta, Carlos
author_sort Ruiz-Correa, Salvador
collection PubMed
description BACKGROUND: The Health Sentinel (Centinela de la Salud, CDS), a mobile crowdsourcing platform that includes the CDS app, was deployed to assess its utility as a tool for COVID-19 surveillance in San Luis Potosí, Mexico. METHODS: The CDS app allowed anonymized individual surveys of demographic features and COVID-19 risk of transmission and exacerbation factors from users of the San Luis Potosí Metropolitan Area (SLPMA). The platform’s data processing pipeline computed and geolocalized the risk index of each user and enabled the analysis of the variables and their association. Point process analysis identified geographic clustering patterns of users at risk and these were compared with the patterns of COVID-19 cases confirmed by the State Health Services. RESULTS: A total of 1554 COVID-19 surveys were administered through the CDS app. Among the respondents, 50.4 % were men and 49.6 % women, with an average age of 33.5 years. Overall risk index frequencies were, in descending order: no-risk 77.8 %, low risk 10.6 %, respiratory symptoms 6.7 %, medium risk 1.4 %, high risk 2.0 %, very high risk 1.5 %. Comorbidity was the most frequent vulnerability category (32.4 %), followed by the inability to keep home lockdown (19.2 %). Statistically significant risk clusters identified at a spatial scale between 5 and 730 m coincided with those in neighborhoods containing substantial numbers of confirmed COVID-19 cases. CONCLUSIONS: The CDS platform enables the analysis of the sociodemographic features and spatial distribution of individual risk indexes of COVID-19 transmission and exacerbation. It is a useful epidemiological surveillance and early detection tool because it identifies statistically significant and consistent risk clusters in neighborhoods with a substantial number of confirmed COVID-19 cases.
format Online
Article
Text
id pubmed-8159707
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier B.V.
record_format MEDLINE/PubMed
spelling pubmed-81597072021-05-28 Health Sentinel: A mobile crowdsourcing platform for self-reported surveys provides early detection of COVID-19 clusters in San Luis Potosí, Mexico Ruiz-Correa, Salvador López-Revilla, Rubén Díaz-Barriga, Fernando Marmolejo-Cossío, Francisco del Carmen Robledo-Valero, Viridiana Hernández-Huérfano, Emilio Ernesto Álvarez-Rivera, Leonardo Rangel-Martínez, Mónica Liliana Lutzow-Steiner, Miguel Ángel Ortiz-Vázquez, Luis Alfredo Mendoza-Lara, Andrea Rebeca Olivo-Rodríguez, Montserrat Galván-Ramírez, Marco Sebastián Morales-Neri, Ángel Emanuel Martínez-Donjuan, Víctor Uriel Cervantes-Irurzo, Massiel Isabella Comas-García, Andreu Hernández-Maldonado, Fernando Aguilar-Acosta, Carlos Int J Med Inform Article BACKGROUND: The Health Sentinel (Centinela de la Salud, CDS), a mobile crowdsourcing platform that includes the CDS app, was deployed to assess its utility as a tool for COVID-19 surveillance in San Luis Potosí, Mexico. METHODS: The CDS app allowed anonymized individual surveys of demographic features and COVID-19 risk of transmission and exacerbation factors from users of the San Luis Potosí Metropolitan Area (SLPMA). The platform’s data processing pipeline computed and geolocalized the risk index of each user and enabled the analysis of the variables and their association. Point process analysis identified geographic clustering patterns of users at risk and these were compared with the patterns of COVID-19 cases confirmed by the State Health Services. RESULTS: A total of 1554 COVID-19 surveys were administered through the CDS app. Among the respondents, 50.4 % were men and 49.6 % women, with an average age of 33.5 years. Overall risk index frequencies were, in descending order: no-risk 77.8 %, low risk 10.6 %, respiratory symptoms 6.7 %, medium risk 1.4 %, high risk 2.0 %, very high risk 1.5 %. Comorbidity was the most frequent vulnerability category (32.4 %), followed by the inability to keep home lockdown (19.2 %). Statistically significant risk clusters identified at a spatial scale between 5 and 730 m coincided with those in neighborhoods containing substantial numbers of confirmed COVID-19 cases. CONCLUSIONS: The CDS platform enables the analysis of the sociodemographic features and spatial distribution of individual risk indexes of COVID-19 transmission and exacerbation. It is a useful epidemiological surveillance and early detection tool because it identifies statistically significant and consistent risk clusters in neighborhoods with a substantial number of confirmed COVID-19 cases. Elsevier B.V. 2021-09 2021-05-28 /pmc/articles/PMC8159707/ /pubmed/34098316 http://dx.doi.org/10.1016/j.ijmedinf.2021.104508 Text en © 2021 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Ruiz-Correa, Salvador
López-Revilla, Rubén
Díaz-Barriga, Fernando
Marmolejo-Cossío, Francisco
del Carmen Robledo-Valero, Viridiana
Hernández-Huérfano, Emilio Ernesto
Álvarez-Rivera, Leonardo
Rangel-Martínez, Mónica Liliana
Lutzow-Steiner, Miguel Ángel
Ortiz-Vázquez, Luis Alfredo
Mendoza-Lara, Andrea Rebeca
Olivo-Rodríguez, Montserrat
Galván-Ramírez, Marco Sebastián
Morales-Neri, Ángel Emanuel
Martínez-Donjuan, Víctor Uriel
Cervantes-Irurzo, Massiel Isabella
Comas-García, Andreu
Hernández-Maldonado, Fernando
Aguilar-Acosta, Carlos
Health Sentinel: A mobile crowdsourcing platform for self-reported surveys provides early detection of COVID-19 clusters in San Luis Potosí, Mexico
title Health Sentinel: A mobile crowdsourcing platform for self-reported surveys provides early detection of COVID-19 clusters in San Luis Potosí, Mexico
title_full Health Sentinel: A mobile crowdsourcing platform for self-reported surveys provides early detection of COVID-19 clusters in San Luis Potosí, Mexico
title_fullStr Health Sentinel: A mobile crowdsourcing platform for self-reported surveys provides early detection of COVID-19 clusters in San Luis Potosí, Mexico
title_full_unstemmed Health Sentinel: A mobile crowdsourcing platform for self-reported surveys provides early detection of COVID-19 clusters in San Luis Potosí, Mexico
title_short Health Sentinel: A mobile crowdsourcing platform for self-reported surveys provides early detection of COVID-19 clusters in San Luis Potosí, Mexico
title_sort health sentinel: a mobile crowdsourcing platform for self-reported surveys provides early detection of covid-19 clusters in san luis potosí, mexico
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159707/
https://www.ncbi.nlm.nih.gov/pubmed/34098316
http://dx.doi.org/10.1016/j.ijmedinf.2021.104508
work_keys_str_mv AT ruizcorreasalvador healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT lopezrevillaruben healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT diazbarrigafernando healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT marmolejocossiofrancisco healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT delcarmenrobledovaleroviridiana healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT hernandezhuerfanoemilioernesto healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT alvarezriveraleonardo healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT rangelmartinezmonicaliliana healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT lutzowsteinermiguelangel healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT ortizvazquezluisalfredo healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT mendozalaraandrearebeca healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT olivorodriguezmontserrat healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT galvanramirezmarcosebastian healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT moralesneriangelemanuel healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT martinezdonjuanvictoruriel healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT cervantesirurzomassielisabella healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT comasgarciaandreu healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT hernandezmaldonadofernando healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico
AT aguilaracostacarlos healthsentinelamobilecrowdsourcingplatformforselfreportedsurveysprovidesearlydetectionofcovid19clustersinsanluispotosimexico