Cargando…

ω-3PUFA supplementation ameliorates adipose tissue inflammation and insulin-stimulated glucose disposal in subjects with obesity: a potential role for apolipoprotein E

BACKGROUND: Long chain omega-3 polyunsaturated fatty acids (ω-3PUFA) supplementation in animal models of diet-induced obesity has consistently shown to improve insulin sensitivity. The same is not always reported in human studies with insulin resistant (IR) subjects with obesity. OBJECTIVE: We studi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hernandez, James D., Li, Ting, Rau, Cassandra M., LeSuer, William E., Wang, Panwen, Coletta, Dawn K., Madura, James A., Jacobsen, Elizabeth A., De Filippis, Eleanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159741/
https://www.ncbi.nlm.nih.gov/pubmed/33753887
http://dx.doi.org/10.1038/s41366-021-00801-w
Descripción
Sumario:BACKGROUND: Long chain omega-3 polyunsaturated fatty acids (ω-3PUFA) supplementation in animal models of diet-induced obesity has consistently shown to improve insulin sensitivity. The same is not always reported in human studies with insulin resistant (IR) subjects with obesity. OBJECTIVE: We studied whether high-dose ω-3PUFA supplementation for 3 months improves insulin sensitivity and adipose tissue (AT) inflammation in IR subjects with obesity. METHODS: Thirteen subjects (BMI = 39.3 ± 1.6 kg/m(2)) underwent 80 mU/m(2)·min euglycemic-hyperinsulinemic clamp with subcutaneous (Sc) AT biopsy before and after 3 months of ω-3PUFA (DHA and EPA, 4 g/daily) supplementation. Cytoadipokine plasma profiles were assessed before and after ω-3PUFA. AT-specific inflammatory gene expression was evaluated on Sc fat biopsies. Microarray analysis was performed on the fat biopsies collected during the program. RESULTS: Palmitic and stearic acid plasma levels were significantly reduced (P < 0.05) after ω-3PUFA. Gene expression of pro-inflammatory markers and adipokines were improved after ω-3PUFA (P < 0.05). Systemic inflammation was decreased after ω-3PUFA, as shown by cytokine assessment (P < 0.05). These changes were associated with a 25% increase in insulin-stimulated glucose disposal (4.7 ± 0.6 mg/kg ffm•min vs. 5.9 ± 0.9 mg/kg ffm•min) despite no change in body weight. Microarray analysis identified 53 probe sets significantly altered post- ω-3PUFA, with Apolipoprotein E (APOE) being one of the most upregulated genes. CONCLUSION: High dose of long chain ω-3PUFA supplementation modulates significant changes in plasma fatty acid profile, AT, and systemic inflammation. These findings are associated with significant improvement of insulin-stimulated glucose disposal. Unbiased microarray analysis of Sc fat biopsy identified APOE as among the most differentially regulated gene after ω-3PUFA supplementation. We speculate that ω-3PUFA increases macrophage-derived APOE mRNA levels with anti-inflammatory properties.