Cargando…
Water-Processable, Biodegradable and Coatable Aquaplastic from Engineered Biofilms
Petrochemical-based plastics have not only contaminated all parts of the globe but are also causing potentially irreversible damage to our ecosystem, due to their non-biodegradability. As bioplastics are limited in number, there is an urgent need to design and develop more biodegradable alternatives...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159863/ https://www.ncbi.nlm.nih.gov/pubmed/33737758 http://dx.doi.org/10.1038/s41589-021-00773-y |
Sumario: | Petrochemical-based plastics have not only contaminated all parts of the globe but are also causing potentially irreversible damage to our ecosystem, due to their non-biodegradability. As bioplastics are limited in number, there is an urgent need to design and develop more biodegradable alternatives to mitigate the plastic menace. In this regard, we report aquaplastic, a new class of microbial biofilm-based biodegradable bioplastic that is water-processable, robust, templatable and coatable. Herein, Escherichia coli was genetically engineered to produce protein-based hydrogels, which are cast and dried under ambient conditions to produce aquaplastic that can withstand strong acid/base and organic solvents. In addition, aquaplastic can be healed and welded to form three-dimensional architectures using water. The combination of straightforward microbial fabrication, water-processability, and biodegradability make aquaplastic a unique material worthy of further exploration for packaging and coating applications. |
---|