Cargando…
Kernel weighted least square approach for imputing missing values of metabolomics data
Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that...
Autores principales: | Kumar, Nishith, Hoque, Md. Aminul, Sugimoto, Masahiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159923/ https://www.ncbi.nlm.nih.gov/pubmed/34045614 http://dx.doi.org/10.1038/s41598-021-90654-0 |
Ejemplares similares
-
Missing value imputation using least squares techniques in contaminated matrices
por: Garcia-Peña, Marisol, et al.
Publicado: (2022) -
Metabolomic Biomarker Identification in Presence of Outliers and Missing Values
por: Kumar, Nishith, et al.
Publicado: (2017) -
Robust volcano plot: identification of differential metabolites in the presence of outliers
por: Kumar, Nishith, et al.
Publicado: (2018) -
Kernel Partial Least Squares Feature Selection Based on Maximum Weight Minimum Redundancy
por: Liu, Xiling, et al.
Publicado: (2023) -
Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data
por: Wei, Runmin, et al.
Publicado: (2018)